The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone...The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian (-260 Ma) mass extinction. The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic- ultramafic and silicic plutonic rocks exposed. The EL1P is divided into three nearly concentric zones (i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological evidence to an interval of 〈3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or mantle plume) sources or both. The range of Sr (Isr ≈ 0.7040-0.7132), Nd (ENd(t) ≈ -14 tO +8), Pb (206-pb/204-pb1 ≈ 17.9-20.6) and Os (Yos ≈ -5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compo- sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits a展开更多
Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie b...Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie basement, intense volcanic activities in North Huaiyang and the formation of fault-controlled depressions in the Hefei basin. This thermal doming extension can be further divided into two consecutive evolving stages, i.e. the intensifying stage (140-105 Ma) and the declining stage (105-85 Ma). In the first stage (140-105 Ma), the thermal doming mainly was concentrated in the Dabie block, and to a less degree, in the Hongan block. The thermal doming structure of the Dabie block is configured with Macheng-Yuexi thermal axis, Yuexi/Luotian thermal cores and their downslide flanks. The orientation of thermal axis is dominantly parallel to the strike of orogen, and UHP/HP units together with metamorphic rocks of North Huaiyang constitute the downslide flanks. The Yuexi core differs from the Luotian core in both the intensity and the shaping time. To some extent, the Hongan block can be regarded as part of downslide systems of the Dabie doming structure. The doming process is characterized by thermal-center's migration along the Macheng-Yuexi thermal axis; consequently, it is speculated to be attributed to the convective removal of thickened orogenic root, which is a process characterized by intermittance, migration, large-scale and differentiation. During the declining stage (105-85 Ma), the dome- shaped figure still structurally existed in the Dabie orogen, but orogenic units cooled remarkably slow and magmatic activities stagnated gradually. Study on the thermal doming of Dabieshan Mountains can thus provide detailed constraints on the major tectonic problems such as the UHP/HP exhumation model, the boundary between North Dabie and South Dabie, and the orogenesis mechanism.展开更多
通过对念青唐占拉山冰碛地层划分及冰碛物同位素测年,发现最早一期冰碛物形成于0.7~0.6Ma BP,指示自中更新世以来念青唐古拉山脉开始隆升,主峰地区发生了大规模的冰川剥蚀作用,形成了大面积分布的冰碛高平台;0.2~0.14 Ma BP念青唐古...通过对念青唐占拉山冰碛地层划分及冰碛物同位素测年,发现最早一期冰碛物形成于0.7~0.6Ma BP,指示自中更新世以来念青唐古拉山脉开始隆升,主峰地区发生了大规模的冰川剥蚀作用,形成了大面积分布的冰碛高平台;0.2~0.14 Ma BP念青唐古拉山又快速隆升,并堆积了刚刚伸出各大沟谷口的高侧碛;0.07~0.03 Ma BP念青唐古拉山再次小规模隆起,形成各大沟谷内的侧碛和终碛垄;0.01 Ma BP还有小规模冰川活动。念青唐古拉山主峰地区的冰川剥蚀作用反映出的山脉隆升过程,可较好地与青藏高原的隆起过程相对比,它应是青藏高原隆升的响应。展开更多
基金supported by NSC grant 102-2628-M-003-001-MY4 to JGS
文摘The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian (-260 Ma) mass extinction. The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic- ultramafic and silicic plutonic rocks exposed. The EL1P is divided into three nearly concentric zones (i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological evidence to an interval of 〈3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or mantle plume) sources or both. The range of Sr (Isr ≈ 0.7040-0.7132), Nd (ENd(t) ≈ -14 tO +8), Pb (206-pb/204-pb1 ≈ 17.9-20.6) and Os (Yos ≈ -5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compo- sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits a
基金This work was supported by the National Natural Science Foundation of China (Grant No. 49572100) the Foundation of the Education Ministry of China for University Key Teachers.
文摘Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie basement, intense volcanic activities in North Huaiyang and the formation of fault-controlled depressions in the Hefei basin. This thermal doming extension can be further divided into two consecutive evolving stages, i.e. the intensifying stage (140-105 Ma) and the declining stage (105-85 Ma). In the first stage (140-105 Ma), the thermal doming mainly was concentrated in the Dabie block, and to a less degree, in the Hongan block. The thermal doming structure of the Dabie block is configured with Macheng-Yuexi thermal axis, Yuexi/Luotian thermal cores and their downslide flanks. The orientation of thermal axis is dominantly parallel to the strike of orogen, and UHP/HP units together with metamorphic rocks of North Huaiyang constitute the downslide flanks. The Yuexi core differs from the Luotian core in both the intensity and the shaping time. To some extent, the Hongan block can be regarded as part of downslide systems of the Dabie doming structure. The doming process is characterized by thermal-center's migration along the Macheng-Yuexi thermal axis; consequently, it is speculated to be attributed to the convective removal of thickened orogenic root, which is a process characterized by intermittance, migration, large-scale and differentiation. During the declining stage (105-85 Ma), the dome- shaped figure still structurally existed in the Dabie orogen, but orogenic units cooled remarkably slow and magmatic activities stagnated gradually. Study on the thermal doming of Dabieshan Mountains can thus provide detailed constraints on the major tectonic problems such as the UHP/HP exhumation model, the boundary between North Dabie and South Dabie, and the orogenesis mechanism.
文摘通过对念青唐占拉山冰碛地层划分及冰碛物同位素测年,发现最早一期冰碛物形成于0.7~0.6Ma BP,指示自中更新世以来念青唐古拉山脉开始隆升,主峰地区发生了大规模的冰川剥蚀作用,形成了大面积分布的冰碛高平台;0.2~0.14 Ma BP念青唐古拉山又快速隆升,并堆积了刚刚伸出各大沟谷口的高侧碛;0.07~0.03 Ma BP念青唐古拉山再次小规模隆起,形成各大沟谷内的侧碛和终碛垄;0.01 Ma BP还有小规模冰川活动。念青唐古拉山主峰地区的冰川剥蚀作用反映出的山脉隆升过程,可较好地与青藏高原的隆起过程相对比,它应是青藏高原隆升的响应。