计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行处理.这种分布式并行处理的难点是...计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行处理.这种分布式并行处理的难点是分割机制,为了不破坏数据的完整性,只有采用复杂的分割算法,这同时也使分割模块成为检测系统新的瓶颈.为了克服这个问题,提出了分布式神经网络学习算法,并将其用于大规模网络入侵检测.该算法的优点是,大数据集可被随机分割后分发给独立的神经网络进行并行学习,在降低分割算法复杂度的同时,保证学习结果的完整性.对该算法的测试实验首先采用基准测试数据circle-in-the-square测试了其学习能力,并与ARTMAP(adaptive resonance theory supervised predictive mapping)和BP(back propagation)神经网络进行了比较;然后采用标准的入侵检测测试数据集KDD'99 Data Set测试了其对大规模入侵的检测性能.通过与其他方法在相同数据集上的测试结果的比较表明,分布式学习算法同样具有较高的检测效率和较低的误报率.展开更多
数据隐私保护问题已成为推荐系统面临的主要挑战之一.随着《中华人民共和国网络安全法》的颁布和欧盟《通用数据保护条例》的实施,数据隐私和安全成为了世界性的趋势.联邦学习可通过不交换数据训练全局模型,不会泄露用户隐私.但是联邦...数据隐私保护问题已成为推荐系统面临的主要挑战之一.随着《中华人民共和国网络安全法》的颁布和欧盟《通用数据保护条例》的实施,数据隐私和安全成为了世界性的趋势.联邦学习可通过不交换数据训练全局模型,不会泄露用户隐私.但是联邦学习存在每台设备数据量少、模型容易过拟合、数据稀疏导致训练好的模型很难达到较高的预测精度等问题.同时,随着5G(the 5th generation mobile communication technology)时代的到来,个人设备数据量和传输速率预计比当前提高10~100倍,因此要求模型执行效率更高.针对此问题,知识蒸馏可以将教师模型中的知识迁移到更为紧凑的学生模型中去,让学生模型能尽可能逼近或是超过教师网络,从而有效解决模型参数多和通信开销大的问题.但往往蒸馏后的学生模型在精度上会低于教师模型.提出一种面向推荐系统的联邦蒸馏方法,该方法首先在联邦蒸馏的目标函数中加入Kullback-Leibler散度和正则项,减少教师网络和学生网络间的差异性影响;引入多头注意力机制丰富编码信息,提升模型精度;并提出一个改进的自适应学习率训练策略来自动切换优化算法,选择合适的学习率,提升模型的收敛速度.实验验证了该方法的有效性:相比基准算法,模型的训练时间缩短52%,模型的准确率提升了13%,平均误差减少17%,NDCG值提升了10%.展开更多
文摘计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行处理.这种分布式并行处理的难点是分割机制,为了不破坏数据的完整性,只有采用复杂的分割算法,这同时也使分割模块成为检测系统新的瓶颈.为了克服这个问题,提出了分布式神经网络学习算法,并将其用于大规模网络入侵检测.该算法的优点是,大数据集可被随机分割后分发给独立的神经网络进行并行学习,在降低分割算法复杂度的同时,保证学习结果的完整性.对该算法的测试实验首先采用基准测试数据circle-in-the-square测试了其学习能力,并与ARTMAP(adaptive resonance theory supervised predictive mapping)和BP(back propagation)神经网络进行了比较;然后采用标准的入侵检测测试数据集KDD'99 Data Set测试了其对大规模入侵的检测性能.通过与其他方法在相同数据集上的测试结果的比较表明,分布式学习算法同样具有较高的检测效率和较低的误报率.
文摘数据隐私保护问题已成为推荐系统面临的主要挑战之一.随着《中华人民共和国网络安全法》的颁布和欧盟《通用数据保护条例》的实施,数据隐私和安全成为了世界性的趋势.联邦学习可通过不交换数据训练全局模型,不会泄露用户隐私.但是联邦学习存在每台设备数据量少、模型容易过拟合、数据稀疏导致训练好的模型很难达到较高的预测精度等问题.同时,随着5G(the 5th generation mobile communication technology)时代的到来,个人设备数据量和传输速率预计比当前提高10~100倍,因此要求模型执行效率更高.针对此问题,知识蒸馏可以将教师模型中的知识迁移到更为紧凑的学生模型中去,让学生模型能尽可能逼近或是超过教师网络,从而有效解决模型参数多和通信开销大的问题.但往往蒸馏后的学生模型在精度上会低于教师模型.提出一种面向推荐系统的联邦蒸馏方法,该方法首先在联邦蒸馏的目标函数中加入Kullback-Leibler散度和正则项,减少教师网络和学生网络间的差异性影响;引入多头注意力机制丰富编码信息,提升模型精度;并提出一个改进的自适应学习率训练策略来自动切换优化算法,选择合适的学习率,提升模型的收敛速度.实验验证了该方法的有效性:相比基准算法,模型的训练时间缩短52%,模型的准确率提升了13%,平均误差减少17%,NDCG值提升了10%.