The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
In this letter, the Clarkson-Kruskal direct method is extended to similarity reduce some differentialdifference equations. As examples, the differential-difference KZ equation and KP equation are considered.
In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formu...In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.展开更多
The impulsive solution for a semi-linear singularly perturbed differential-difference equation is studied. Using the methods of boundary function and fractional steps, we construct the formula asymptotic expansion of ...The impulsive solution for a semi-linear singularly perturbed differential-difference equation is studied. Using the methods of boundary function and fractional steps, we construct the formula asymptotic expansion of the problem. At the same time, Based on sewing techniques, the existence of the smooth impulsive solution and the uniform validity of the asymptotic expansion are proved.展开更多
Using Schauder's fixed point theorem, we obtain the existence and uniqueness of the solution for the boundary value problem of a third order differential-difference equation,and an approximate solution as well as ...Using Schauder's fixed point theorem, we obtain the existence and uniqueness of the solution for the boundary value problem of a third order differential-difference equation,and an approximate solution as well as an estimation of the error between the approximate solution and the solutionis given by using the Picard's iterative methods.展开更多
In this paper,we mainly discuss entire solutions of finite order of the following Fermat type differential-difference equation[f(k)(z)]2+[△cf(z)]2=1,and the systems of differential-difference equations of the from ■...In this paper,we mainly discuss entire solutions of finite order of the following Fermat type differential-difference equation[f(k)(z)]2+[△cf(z)]2=1,and the systems of differential-difference equations of the from ■Our results can be proved to be the sufficient and necessary solutions to both equation and systems of equations.展开更多
In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete ...In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example,several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived.Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.展开更多
In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic co...In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.展开更多
The extended simplest equation method is used to solve exactly a new differential-difference equation of fractional-type, proposed by Narita [J. Math. Anal. Appl. 381(2011) 963] quite recently, related to the discrete...The extended simplest equation method is used to solve exactly a new differential-difference equation of fractional-type, proposed by Narita [J. Math. Anal. Appl. 381(2011) 963] quite recently, related to the discrete MKdV equation. It is shown that the model supports three types of exact solutions with arbitrary parameters: hyperbolic,trigonometric and rational, which have not been reported before.展开更多
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
文摘In this letter, the Clarkson-Kruskal direct method is extended to similarity reduce some differentialdifference equations. As examples, the differential-difference KZ equation and KP equation are considered.
基金Supported by the National Natural Science Funds (11071075)the Natural Science Foundation of Shanghai(10ZR1409200)+1 种基金the National Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciencesthe E-Institutes of Shanghai Municipal Education Commissions(E03004)
文摘In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.
基金Supported by the National Natural Science Foundation of China(N.11501236,N.11471118,N.30921064 and 90820307),the Innovation Project in the Chinese AcademDepartment of Mathematics,Shanghai Key Laboratory of PMMP,East China Normal University
文摘The impulsive solution for a semi-linear singularly perturbed differential-difference equation is studied. Using the methods of boundary function and fractional steps, we construct the formula asymptotic expansion of the problem. At the same time, Based on sewing techniques, the existence of the smooth impulsive solution and the uniform validity of the asymptotic expansion are proved.
文摘Using Schauder's fixed point theorem, we obtain the existence and uniqueness of the solution for the boundary value problem of a third order differential-difference equation,and an approximate solution as well as an estimation of the error between the approximate solution and the solutionis given by using the Picard's iterative methods.
基金supported by the National Natural Science Foundation of China(11701188)
文摘In this paper,we mainly discuss entire solutions of finite order of the following Fermat type differential-difference equation[f(k)(z)]2+[△cf(z)]2=1,and the systems of differential-difference equations of the from ■Our results can be proved to be the sufficient and necessary solutions to both equation and systems of equations.
文摘In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example,several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived.Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.
基金the National Key Basic Research Project of China under
文摘In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.
文摘The extended simplest equation method is used to solve exactly a new differential-difference equation of fractional-type, proposed by Narita [J. Math. Anal. Appl. 381(2011) 963] quite recently, related to the discrete MKdV equation. It is shown that the model supports three types of exact solutions with arbitrary parameters: hyperbolic,trigonometric and rational, which have not been reported before.