objective: To investigate the effects of caffeic acid ester fraction (Caf) from Erigeron breviscapus, mainly composed of dicaffeoylquinic acids (diCQAs), on microglial activation in vitro and focal cerebral ische...objective: To investigate the effects of caffeic acid ester fraction (Caf) from Erigeron breviscapus, mainly composed of dicaffeoylquinic acids (diCQAs), on microglial activation in vitro and focal cerebral ischemia in vivo. Methods: The production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1 β ) induced by lipopolysaccharide (LPS) treatment in rat primary cultured microglia were measured by Griess reaction or enzyme-linked immunosorbent assay. Cell viability of cortical neurons was measured using AlamarBlue reagent. The behavioral tests and the infarct area of brain were used to evaluate the damage to central nervous system in rat middle cerebral artery occlusion (MCAO) model of cerebral ischemia. Real time polymerase chain reaction was used to determine the expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-1 β mRNA in ischemic cerebral tissues. Results: Caf inhibited the production of NO, TNF-α and IL-1β induced by LPS treatment in primary microglia in a dose-dependent manner. Exposure of cortical neurons to conditioned medium from Caf-treated microglia increased neuronal cell viability (P〈0.01) compared with conditioned medium from LPS-treated alone. In MCAO rat model of cerebral ischemia, Caf could significantly improve neurobehavioural performance and reduce pementage infarct volume compared with the vehicle group (P〈0.05). Caf could also significantly inhibit the up-regulation of iNOS, TNF-α, and IL-1 β gene expressions in ischemic cerebral tissues. Conclusion: Car could suppress microglial activation, which may be one mechanism of its neuroprotective effect against ischemia.展开更多
基金Supported by National Natural Science Foundation of China(No.81173592,81001654,81102699)the Funds from the Ministry of Science and Technology of China (No.2009DFA31070,PCSIRT-IRT0973)Tianjin Natural Science Fund(No.11JCZDJC21100,08JCYBJC10800)
文摘objective: To investigate the effects of caffeic acid ester fraction (Caf) from Erigeron breviscapus, mainly composed of dicaffeoylquinic acids (diCQAs), on microglial activation in vitro and focal cerebral ischemia in vivo. Methods: The production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1 β ) induced by lipopolysaccharide (LPS) treatment in rat primary cultured microglia were measured by Griess reaction or enzyme-linked immunosorbent assay. Cell viability of cortical neurons was measured using AlamarBlue reagent. The behavioral tests and the infarct area of brain were used to evaluate the damage to central nervous system in rat middle cerebral artery occlusion (MCAO) model of cerebral ischemia. Real time polymerase chain reaction was used to determine the expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-1 β mRNA in ischemic cerebral tissues. Results: Caf inhibited the production of NO, TNF-α and IL-1β induced by LPS treatment in primary microglia in a dose-dependent manner. Exposure of cortical neurons to conditioned medium from Caf-treated microglia increased neuronal cell viability (P〈0.01) compared with conditioned medium from LPS-treated alone. In MCAO rat model of cerebral ischemia, Caf could significantly improve neurobehavioural performance and reduce pementage infarct volume compared with the vehicle group (P〈0.05). Caf could also significantly inhibit the up-regulation of iNOS, TNF-α, and IL-1 β gene expressions in ischemic cerebral tissues. Conclusion: Car could suppress microglial activation, which may be one mechanism of its neuroprotective effect against ischemia.
文摘目的筛选黑沙蒿中有抗肥大细胞脱颗粒的二咖啡酰奎宁酸类化合物(dicaffeoylquinic acid,DCQAs),并结合网络药理学方法对活性化合物抗过敏性鼻炎作用机制进行探索。方法通过检测细胞生存率、β-氨基己糖苷酶释放率及中性红染色建立C48/80诱导P815细胞脱颗粒的最佳方案;检测β-氨基己糖苷酶释放率筛选DCQAs;通过STITCH、Swiss、TCMID、TCMSP及GeneCards数据库收集活性化合物靶点、过敏性鼻炎和肥大细胞脱颗粒的相关靶点,获得共同有效靶点;应用String数据库和Cytoscape3.7.2软件构建化合物-潜在有效靶点的网络图;利用DAVID数据库对有效靶点进行GO(Gene Ontology)功能富集分析和KEGG(Kyoto Encyclopedia of Genes and Genomes)通路富集分析。结果 6种DCQAs中,仅有3,5-DCQA和4,5-DCQA可显著减少肥大细胞脱颗粒;通过筛选发现18个潜在有效靶点,其中整合素β-1(integrinβ-1,ITGB1)、中性粒细胞弹性蛋白酶(neutrophil elastase,ELANE)、72 kDa IV型胶原酶(72 kDa type IV collagenase,MMP2)、原癌基因酪氨酸蛋白激酶(proto-oncogene tyrosine-protein kinase Src,SRC)以及caspase-3可能是中心节点;GO和KEGG分析显示活性DCQAs通过白细胞跨内皮转移信号通路、GnRH信号通路和肿瘤信号通路等参与MAPK正向调节、细胞外基质分解和整合素介导的信号通路等生物学过程。结论 3,5-DCQA和4,5-DCQA为黑沙蒿提取物抗过敏性鼻炎的潜在活性化合物,通过多靶点-多途径发挥作用,为黑沙蒿提取物治疗过敏性鼻炎提供科学依据。