期刊文献+
共找到2,459篇文章
< 1 2 123 >
每页显示 20 50 100
基于GRU-NN模型的短期负荷预测方法 被引量:177
1
作者 王增平 赵兵 +2 位作者 纪维佳 高欣 李晓兵 《电力系统自动化》 EI CSCD 北大核心 2019年第5期53-62,共10页
目前基于统计分析和机器学习的预测方法难以同时兼顾负荷数据的时序性和非线性特点。文中提出了一种基于GRU-NN模型的短期电力负荷预测方法。该方法基于深度学习思想处理不同类型的负荷影响因素,引入门控循环单元(GRU)网络处理具有时序... 目前基于统计分析和机器学习的预测方法难以同时兼顾负荷数据的时序性和非线性特点。文中提出了一种基于GRU-NN模型的短期电力负荷预测方法。该方法基于深度学习思想处理不同类型的负荷影响因素,引入门控循环单元(GRU)网络处理具有时序性特点的历史负荷序列,建模学习负荷数据内部动态变化规律,其输出结果与其他外部影响因素(天气、日类型等)融合为新的输入特征,使用深度神经网络进行处理,整体分析特征与负荷变化的内在联系,最后完成负荷预测。以美国某公共事业部门提供的公开数据集和中国某地区的负荷数据作为实际算例,该方法预测精度分别达到了97.30%和97.12%,并与长短期记忆神经网络、多层感知机以及GRU神经网络方法进行对比,实验结果表明所提方法具有更高的预测精度和更快的预测速度。 展开更多
关键词 电力系统 短期负荷预测 门控循环单元 深度神经网络
下载PDF
深度学习研究与进展 被引量:132
2
作者 孙志远 鲁成祥 +1 位作者 史忠植 马刚 《计算机科学》 CSCD 北大核心 2016年第2期1-8,共8页
深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理... 深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理论及应用的热潮。实践表明,深度学习是一种高效的特征提取方法,它能够提取数据中更加抽象的特征,实现对数据更本质的刻画,同时深层模型具有更强的建模和推广能力。鉴于深度学习的优点及其广泛应用,对深度学习进行了较为系统的介绍,详细阐述了其产生背景、理论依据、典型的深度学习模型、具有代表性的快速学习算法、最新进展及实践应用,最后探讨了深度学习未来值得研究的方向。 展开更多
关键词 深度学习 机器学习 深层神经网络 图像识别 语音识别 自然语言处理
下载PDF
基于内容的图像分割方法综述 被引量:130
3
作者 姜枫 顾庆 +3 位作者 郝慧珍 李娜 郭延文 陈道蓄 《软件学报》 EI CSCD 北大核心 2017年第1期160-183,共24页
图像分割是指将图像分成若干具有相似性质的区域的过程,是许多图像处理任务的预处理步骤.近年来,国内外学者主要研究基于图像内容的分割算法.在广泛调研大量文献和最新成果的基础上,将图像分割算法分为基于图论的方法、基于像素聚类的... 图像分割是指将图像分成若干具有相似性质的区域的过程,是许多图像处理任务的预处理步骤.近年来,国内外学者主要研究基于图像内容的分割算法.在广泛调研大量文献和最新成果的基础上,将图像分割算法分为基于图论的方法、基于像素聚类的方法和语义分割方法这3种类型并分别加以介绍.对每类方法所包含的典型算法,尤其是最近几年利用深度网络技术的语义图像分割方法的基本思想、优缺点进行了分析、对比和总结.介绍了图像分割常用的基准数据集和算法评价标准,并用实验对各种图像分割算法进行对比.最后进行总结,并对未来可能的发展趋势加以展望. 展开更多
关键词 图像分割 图论 聚类 语义分割 深度神经网络
下载PDF
深度学习的目标跟踪算法综述 被引量:106
4
作者 李玺 查宇飞 +5 位作者 张天柱 崔振 左旺孟 侯志强 卢湖川 王菡子 《中国图象图形学报》 CSCD 北大核心 2019年第12期2057-2080,共24页
目标跟踪是利用一个视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标位置的一种技术,是计算机视觉的一个重要基础问题,具有重要的理论研究意义和应用价值,在智能视频监控系统、智能... 目标跟踪是利用一个视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标位置的一种技术,是计算机视觉的一个重要基础问题,具有重要的理论研究意义和应用价值,在智能视频监控系统、智能人机交互、智能交通和视觉导航系统等方面具有广泛应用。大数据时代的到来及深度学习方法的出现,为目标跟踪的研究提供了新的契机。本文首先阐述了目标跟踪的基本研究框架,从观测模型的角度对现有目标跟踪的历史进行回顾,指出深度学习为获得更为鲁棒的观测模型提供了可能;进而从深度判别模型、深度生成式模型等方面介绍了适用于目标跟踪的深度学习方法;从网络结构、功能划分和网络训练等几个角度对目前的深度目标跟踪方法进行分类并深入地阐述和分析了当前的深度目标跟踪方法;然后,补充介绍了其他一些深度目标跟踪方法,包括基于分类与回归融合的深度目标跟踪方法、基于强化学习的深度目标跟踪方法、基于集成学习的深度目标跟踪方法和基于元学习的深度目标跟踪方法等;之后,介绍了目前主要的适用于深度目标跟踪的数据库及其评测方法;接下来从移动端跟踪系统,基于检测与跟踪的系统等方面深入分析与总结了目标跟踪中的最新具体应用情况,最后对深度学习方法在目标跟踪中存在的训练数据不足、实时跟踪和长程跟踪等问题进行分析,并对未来的发展方向进行了展望。 展开更多
关键词 视觉目标跟踪 深度神经网络 相关滤波器 深度孪生网络 强化学习 生成对抗网络
原文传递
基于稀疏自动编码深度神经网络的感应电动机故障诊断 被引量:94
5
作者 孙文珺 邵思羽 严如强 《机械工程学报》 EI CAS CSCD 北大核心 2016年第9期65-71,共7页
针对目前感应电动机故障诊断大多采用监督学习提取故障特征的现状,提出一种将去噪编码融入稀疏自动编码器的深度神经网络,实现非监督学习的特征提取并用于感应电动机的故障诊断。稀疏自动编码器通过自动学习复杂数据的内在特征来提取简... 针对目前感应电动机故障诊断大多采用监督学习提取故障特征的现状,提出一种将去噪编码融入稀疏自动编码器的深度神经网络,实现非监督学习的特征提取并用于感应电动机的故障诊断。稀疏自动编码器通过自动学习复杂数据的内在特征来提取简明的数据特征表达。为提高特征表达的鲁棒性,在稀疏编码器的基础上融入去噪编码,提取更有效的特征表达用来训练神经网络分类器进而完成整个深度神经网络的构建,并结合反向传播算法对深度神经网络进行整体微调,提升故障分类的准确度。整个训练过程引入'dropout'训练技巧,减少因过拟合带来的预测误差。试验结果表明,相比传统反向传播(Back propagation,BP)神经网络,提出的深度神经网络能更有效地实现感应电动机故障诊断。 展开更多
关键词 稀疏自动编码器 深度神经网络 去噪编码 DROPOUT 故障诊断
下载PDF
基于深度门控循环单元神经网络的短期风功率预测模型 被引量:92
6
作者 牛哲文 余泽远 +1 位作者 李波 唐文虎 《电力自动化设备》 EI CSCD 北大核心 2018年第5期36-42,共7页
随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进... 随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进行预测。考虑到风功率预测中输入数据的波动性和不确定性,在传统门控循环单元(GRU)神经网络的基础上融合卷积神经网络(CNN),以提高模型对原始数据的特征提取和降维能力,并引入dropout技术减少模型中的过拟合现象。工程实例分析表明,所提模型在预测准确度和运算速度方面均优于长短记忆神经网络模型。 展开更多
关键词 风功率预测 深度神经网络 门控循环单元 卷积神经网络
下载PDF
语音识别技术的研究进展与展望 被引量:75
7
作者 王海坤 潘嘉 刘聪 《电信科学》 2018年第2期1-11,共11页
自动语音识别(ASR)技术的目的是让机器能够"听懂"人类的语音,将人类语音信息转化为可读的文字信息,是实现人机交互的关键技术,也是长期以来的研究热点。最近几年,随着深度神经网络的应用,加上海量大数据的使用和云计算的普及... 自动语音识别(ASR)技术的目的是让机器能够"听懂"人类的语音,将人类语音信息转化为可读的文字信息,是实现人机交互的关键技术,也是长期以来的研究热点。最近几年,随着深度神经网络的应用,加上海量大数据的使用和云计算的普及,语音识别取得了突飞猛进的进展,在多个行业突破了实用化的门槛,越来越多的语音技术产品进入了人们的日常生活,包括苹果的Siri、亚马逊的Alexa、讯飞语音输入法、叮咚智能音箱等都是其中的典型代表。对语音识别技术的发展情况、最近几年的关键突破性技术进行了介绍,并对语音识别技术的发展趋势做了展望。 展开更多
关键词 自动语音识别 深度神经网络 声学模型 语言模型
下载PDF
基于深度学习的语音识别技术现状与展望 被引量:71
8
作者 戴礼荣 张仕良 黄智颖 《数据采集与处理》 CSCD 北大核心 2017年第2期221-231,共11页
首先对深度学习的发展历史以及概念进行简要的介绍。然后回顾最近几年基于深度学习的语音识别的研究进展。这一部分内容主要分成以下5点进行介绍:声学模型训练准则,基于深度学习的声学模型结构,基于深度学习的声学模型训练效率优化,基... 首先对深度学习的发展历史以及概念进行简要的介绍。然后回顾最近几年基于深度学习的语音识别的研究进展。这一部分内容主要分成以下5点进行介绍:声学模型训练准则,基于深度学习的声学模型结构,基于深度学习的声学模型训练效率优化,基于深度学习的声学模型说话人自适应和基于深度学习的端到端语音识别。最后就基于深度学习的语音识别未来可能的研究方向进行展望。 展开更多
关键词 深度学习 深度神经网络 语音识别 说话人自适应
下载PDF
基于深度学习的测井岩性识别方法研究与应用 被引量:64
9
作者 安鹏 曹丹平 《地球物理学进展》 CSCD 北大核心 2018年第3期1029-1034,共6页
深度学习是一种高效的特征提取方法,它能够提取数据中更加抽象的特征,从而有效地解决复杂的非线性问题.本文将深度学习技术应用于地球物理测井的岩性识别中,构建了一个基于Re Lu激励函数、Adagrad优化算法、Softmax回归层等技术方法整... 深度学习是一种高效的特征提取方法,它能够提取数据中更加抽象的特征,从而有效地解决复杂的非线性问题.本文将深度学习技术应用于地球物理测井的岩性识别中,构建了一个基于Re Lu激励函数、Adagrad优化算法、Softmax回归层等技术方法整合的深度神经网络模型,利用自然伽马、深感应、岩性密度、中子-密度孔隙度和平均中子-密度孔隙度5种测井参数,以及陆相-海相指示和相对位置2种地质约束变量作为输入变量训练深度神经网络模型.通过对实际井数据的测试验证取得了非常理想的效果,展示了将深度学习技术应用于地球物理的良好前景. 展开更多
关键词 深度学习 地球物理测井 岩性识别 深度神经网络
原文传递
基于改进堆叠降噪自编码的滚动轴承故障分类 被引量:63
10
作者 侯文擎 叶鸣 李巍华 《机械工程学报》 EI CAS CSCD 北大核心 2018年第7期87-96,共10页
作为一种新兴的机器学习方法,深度学习在故障诊断领域逐渐得到了应用。其中,堆叠降噪自编码(Stacked de-noising auto-encoders,SDAE)算法先对原始数据添加'损伤噪声',然后通过自编码网络进行数据重构,从而得到更鲁棒性的特征表... 作为一种新兴的机器学习方法,深度学习在故障诊断领域逐渐得到了应用。其中,堆叠降噪自编码(Stacked de-noising auto-encoders,SDAE)算法先对原始数据添加'损伤噪声',然后通过自编码网络进行数据重构,从而得到更鲁棒性的特征表示,易于进行故障分类。然而针对具体的故障诊断问题,网络隐含层节点数、稀疏参数以及输入数据置零比例将直接影响诊断的结果。因此,提出一种改进的SDAE诊断方法,利用粒子群算法(Particle swarm optimization,PSO)对DAE网络超参数进行自适应的选取来确定SDAE网络结构,据此得到故障状态的特征表示,输入到Soft-max分类器中进行故障分类识别。通过变转速工况下的滚动轴承故障仿真和模拟试验对算法进行验证,试验结果表明,基于PSO-SDAE网络的诊断方法在泛化性、故障识别率方面均优于支持向量机(Support vector machine,SVM)、反向传播神经网络(Back propagation,BP)以及深度置信网络(Deep belief network,DBN)。 展开更多
关键词 降噪自编码 深度神经网络 超参数优化 故障诊断
原文传递
元学习研究综述 被引量:62
11
作者 李凡长 刘洋 +3 位作者 吴鹏翔 董方 蔡奇 王哲 《计算机学报》 EI CSCD 北大核心 2021年第2期422-446,共25页
深度学习在大量领域取得优异成果,但仍然存在着鲁棒性和泛化性较差、难以学习和适应未观测任务、极其依赖大规模数据等问题.近两年元学习在深度学习上的发展,为解决上述问题提供了新的视野.元学习是一种模仿生物利用先前已有的知识,从... 深度学习在大量领域取得优异成果,但仍然存在着鲁棒性和泛化性较差、难以学习和适应未观测任务、极其依赖大规模数据等问题.近两年元学习在深度学习上的发展,为解决上述问题提供了新的视野.元学习是一种模仿生物利用先前已有的知识,从而快速学习新的未见事物能力的一种学习定式.元学习的目标是利用已学习的信息,快速适应未学习的新任务.这与实现通用人工智能的目标相契合,对元学习问题的研究也是提高模型的鲁棒性和泛化性的关键.近年来随着深度学习的发展,元学习再度成为热点,目前元学习的研究百家争鸣、百花齐放.本文从元学习的起源出发,系统地介绍元学习的发展历史,包括元学习的由来和原始定义,然后给出当前元学习的通用定义,同时总结当前元学习一些不同方向的研究成果,包括基于度量的元学习方法、基于强泛化新的初始化参数的元学习方法、基于梯度优化器的元学习方法、基于外部记忆单元的元学方法、基于数据增强的元学方法等.总结其共有的思想和存在的问题,对元学习的研究思想进行分类,并叙述不同方法和其相应的算法.最后论述了元学习研究中常用数据集和评判标准,并从元学习的自适应性、进化性、可解释性、连续性、可扩展性展望其未来发展趋势. 展开更多
关键词 元学习 深度学习 深度神经网络 泛化能力 自适应能力 扩展能力
下载PDF
基于深度神经网络的变电站继电保护装置状态监测技术 被引量:62
12
作者 吴迪 汤小兵 +3 位作者 李鹏 杨增力 文博 黎恒烜 《电力系统保护与控制》 EI CSCD 北大核心 2020年第5期81-85,共5页
监测变电站中继电保护装置的实时状态对避免设备损坏或故障,维持电网稳定运行有重要意义。传统的状态监测依赖于定期的人工检查,在耗费大量人力的同时,也难以做到不间断实时监测,且检测精度容易受到主观因素的限制。针对这一困境,提出... 监测变电站中继电保护装置的实时状态对避免设备损坏或故障,维持电网稳定运行有重要意义。传统的状态监测依赖于定期的人工检查,在耗费大量人力的同时,也难以做到不间断实时监测,且检测精度容易受到主观因素的限制。针对这一困境,提出基于深度神经网络与计算机视觉技术的变电站继电保护设备状态监测技术。利用平移变焦摄像机拍摄的变电站实时画面,首先进行图像去噪,并利用图像相关性进行图像配准。根据尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)描述,使用深度神经网络进行图像分类,识别出设备的状态。同时,提出一种对标准图像配准框架的修改方案,使得算法在不同光照条件下具有更高鲁棒性。在实际应用中,该算法可以达到超过99%的检测准确率,大幅提升了变电站的安全性。 展开更多
关键词 变电站巡视 继电保护装置 深度神经网络 计算机视觉
下载PDF
深度学习的金融实证应用:动态、贡献与展望 被引量:55
13
作者 苏治 卢曼 李德轩 《金融研究》 CSSCI 北大核心 2017年第5期111-126,共16页
随着智能时代来临以及金融数据分析需求提升,深度学习已经成为金融领域中的应用前沿,特别是在预测金融市场运动、处理文本信息、改进交易策略方面。深度学习包含深度神经网络、深度信念网络等多种结构,通过分层结构提取深层特征,强化重... 随着智能时代来临以及金融数据分析需求提升,深度学习已经成为金融领域中的应用前沿,特别是在预测金融市场运动、处理文本信息、改进交易策略方面。深度学习包含深度神经网络、深度信念网络等多种结构,通过分层结构提取深层特征,强化重要因素、过滤噪音,对提升预测准确率具有重要意义;其应用及由此衍生的优化技术改进了金融领域预测分析方法,促使实证研究范式从线性向非线性转变、从关注参数显著性向关注模型结构和动态特征转变,同时为丰富金融经济理论做出贡献。构建结构合适、效果稳健的模型以捕捉金融数据有效特征并进行经济含义阐释是应用深度学习方法的难点与重点;未来研究可以从挖掘深层经济意义、提炼一般性预测分析框架、探索其对异质信息的适用性等角度展开。 展开更多
关键词 深度学习 金融市场预测 文本挖掘 深度神经网络 深度信念网络
原文传递
深度神经网络在非侵入式负荷分解中的应用 被引量:53
14
作者 燕续峰 翟少鹏 +2 位作者 王治华 王芬 何光宇 《电力系统自动化》 EI CSCD 北大核心 2019年第1期126-132,167,共8页
负荷监测是智能用电的一个重要环节,为了实现非侵入式负荷监测,提出了一种基于深度神经网络的非侵入式负荷分解方法。首先提出了改进的电器状态聚类算法,通过改进终止条件和增加消除冗余类判据使得聚类结果更符合电器实际运行情况。针... 负荷监测是智能用电的一个重要环节,为了实现非侵入式负荷监测,提出了一种基于深度神经网络的非侵入式负荷分解方法。首先提出了改进的电器状态聚类算法,通过改进终止条件和增加消除冗余类判据使得聚类结果更符合电器实际运行情况。针对目前研究常用的隐马尔可夫模型的弱时间特性问题,提出了电器时间特性模型,综合考虑了电器运行特性和用户使用习惯,从时间角度对电器进行建模。构建了深度神经网络进行负荷分解,网络的输入综合考虑了电器状态及时间、功率信息,采用历史运行数据及时间特性模型生成数据训练网络参数。最后,在测试数据集上验证了方法的有效性和准确性。 展开更多
关键词 非侵入式负荷监测 电器状态聚类 时间特性模型 深度神经网络
下载PDF
深度神经网络并行化研究综述 被引量:53
15
作者 朱虎明 李佩 +2 位作者 焦李成 杨淑媛 侯彪 《计算机学报》 EI CSCD 北大核心 2018年第8期1861-1881,共21页
神经网络是人工智能领域的核心研究内容之一.在七十年的发展历史中,神经网络经历了从浅层神经网络到深度神经网络的重要变革.深度神经网络通过增加模型深度来提高其特征提取和数据拟合的能力,在自然语言处理、自动驾驶、图像分析等问题... 神经网络是人工智能领域的核心研究内容之一.在七十年的发展历史中,神经网络经历了从浅层神经网络到深度神经网络的重要变革.深度神经网络通过增加模型深度来提高其特征提取和数据拟合的能力,在自然语言处理、自动驾驶、图像分析等问题上相较浅层模型具有显著优势.随着训练数据规模的增加和模型的日趋复杂,深度神经网络的训练成本越来越高,并行化成为增强其应用时效性的重要技术手段.近年来计算平台的硬件架构更新迭代,计算能力飞速提高,特别是多核众核以及分布式异构计算平台发展迅速,为深度神经网络的并行化提供了硬件基础;另一方面,日趋丰富的并行编程框架也为计算设备和深度神经网络的并行化架起了桥梁.该文首先介绍了深度神经网络发展背景和常用的计算模型,然后对多核处理器、众核处理器和异构计算设备分别从功耗、计算能力、并行算法的开发难度等角度进行对比分析,对并行编程框架分别从支持的编程语言和硬件设备、编程难度等角度进行阐述.然后以AlexNet为例分析了深度神经网络模型并行和数据并行两种方法的实施过程.接下来,从支持硬件、并行接口、并行模式等角度比较了常用的深度神经网络开源软件,并且通过实验比较和分析了卷积神经网络在多核CPU和GPU上的并行性能.最后,对并行深度神经网络的未来发展趋势和面临的挑战进行展望. 展开更多
关键词 深度神经网络 并行计算 异构计算 模型并行 数据并行
下载PDF
基于U-Net结构改进的医学影像分割技术综述 被引量:50
16
作者 殷晓航 王永才 李德英 《软件学报》 EI CSCD 北大核心 2021年第2期519-550,共32页
深度学习在医学影像分割领域得到广泛应用,其中,2015年提出的U-Net因其分割小目标效果较好、结构具有可扩展性,自提出以来受到广泛关注.近年来,随着医学图像割性能要求的提升,众多学者针对U-Net结构也在不断地改进和扩展,比如编解码器... 深度学习在医学影像分割领域得到广泛应用,其中,2015年提出的U-Net因其分割小目标效果较好、结构具有可扩展性,自提出以来受到广泛关注.近年来,随着医学图像割性能要求的提升,众多学者针对U-Net结构也在不断地改进和扩展,比如编解码器的改进、外接特征金字塔等.通过对基于U-Net结构改进的医学影像分割技术,从面向性能优化和面向结构改进两个方面进行总结,对相关方法进行了综述、分类和总结,并介绍图像分割中常用的损失函数、评价参数和模块,进而总结了针对不同目标改进U-Net结构的思路和方法,为相关研究提供了参考. 展开更多
关键词 U-Net 医学影像分割 结构改进 深度神经网络 技术综述
下载PDF
深度神经网络训练中梯度不稳定现象研究综述 被引量:48
17
作者 陈建廷 向阳 《软件学报》 EI CSCD 北大核心 2018年第7期2071-2091,共21页
深度神经网络作为机器学习领域的热门研究方向,在训练中容易出现梯度不稳定现象,是制约其发展的重要因素,控制和避免深度神经网络的梯度不稳定现象是深度神经网络的重要研究内容.分析了梯度不稳定现象的成因和影响,并综述了目前解决梯... 深度神经网络作为机器学习领域的热门研究方向,在训练中容易出现梯度不稳定现象,是制约其发展的重要因素,控制和避免深度神经网络的梯度不稳定现象是深度神经网络的重要研究内容.分析了梯度不稳定现象的成因和影响,并综述了目前解决梯度不稳定现象的关键技术和主要方法.最后展望了梯度不稳定现象的未来研究方向. 展开更多
关键词 深度神经网络 梯度不稳定现象 梯度衰减 梯度爆炸
下载PDF
基于深度神经网络的图像语义分割研究综述 被引量:47
18
作者 景庄伟 管海燕 +1 位作者 彭代峰 于永涛 《计算机工程》 CAS CSCD 北大核心 2020年第10期1-17,共17页
随着深度学习技术的快速发展及其在语义分割领域的广泛应用,语义分割效果得到显著提升。对基于深度神经网络的图像语义分割方法进行分析与总结,根据网络训练方式的不同,将现有的图像语义分割分为全监督学习图像语义分割和弱监督学习图... 随着深度学习技术的快速发展及其在语义分割领域的广泛应用,语义分割效果得到显著提升。对基于深度神经网络的图像语义分割方法进行分析与总结,根据网络训练方式的不同,将现有的图像语义分割分为全监督学习图像语义分割和弱监督学习图像语义分割,对每种方法中代表性算法的效果以及优缺点进行对比与分析,并阐述深度神经网络对语义分割领域的贡献。在此基础上,归纳当前主流的公共数据集和遥感数据集,对比主要的图像语义分割方法的分割性能,探讨当前语义分割技术面临的挑战并对其未来的发展方向进行展望。 展开更多
关键词 深度神经网络 图像语义分割 计算机视觉 全监督学习 弱监督学习
下载PDF
深度网络模型压缩综述 被引量:45
19
作者 雷杰 高鑫 +2 位作者 宋杰 王兴路 宋明黎 《软件学报》 EI CSCD 北大核心 2018年第2期251-266,共16页
深度网络近年来在计算机视觉任务上不断刷新传统模型的性能,已逐渐成为研究热点.深度模型尽管性能强大,然而由于参数数量庞大、存储和计算代价高,依然难以部署在受限的硬件平台上(如移动设备).模型的参数在一定程度上能够表达其复杂性,... 深度网络近年来在计算机视觉任务上不断刷新传统模型的性能,已逐渐成为研究热点.深度模型尽管性能强大,然而由于参数数量庞大、存储和计算代价高,依然难以部署在受限的硬件平台上(如移动设备).模型的参数在一定程度上能够表达其复杂性,相关研究表明,并不是所有的参数都在模型中发挥作用,部分参数作用有限、表达冗余,甚至会降低模型的性能.首先,对国内外学者在深度模型压缩上取得的成果进行了分类整理,依此归纳了基于网络剪枝、网络精馏和网络分解的方法;随后,总结了相关方法在多种公开深度模型上的压缩效果;最后,对未来的研究可能的方向和挑战进行了展望. 展开更多
关键词 深度神经网络 网络压缩 网络剪枝 网络精馏 网络分解
下载PDF
深度神经网络图像语义分割方法综述 被引量:45
20
作者 徐辉 祝玉华 +1 位作者 甄彤 李智慧 《计算机科学与探索》 CSCD 北大核心 2021年第1期47-59,共13页
图像语义分割是计算机视觉领域近年来的热点研究课题,随着深度学习技术的兴起,图像语义分割与深度学习技术进行融合发展,取得了显著的进步,在无人驾驶、智能安防、智能机器人、人机交互等真实场景中应用广泛。首先对应用于图像语义分割... 图像语义分割是计算机视觉领域近年来的热点研究课题,随着深度学习技术的兴起,图像语义分割与深度学习技术进行融合发展,取得了显著的进步,在无人驾驶、智能安防、智能机器人、人机交互等真实场景中应用广泛。首先对应用于图像语义分割的几种深度神经网络模型进行简单介绍,接着详细阐述了现有主流的基于深度神经网络的图像语义分割方法,依据实现技术的区别对图像语义分割方法进行分类,并对每类方法中代表性算法的技术特点、优势和不足进行分析与总结。之后归纳了图像语义分割常用的大规模公共数据集和性能评价指标,并在此基础上对经典的语义分割方法的实验结果进行了对比,最后对语义分割领域未来可行的研究方向进行展望。 展开更多
关键词 计算机视觉 图像语义分割 深度神经网络
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部