In order to minimize uncertainty of the inversed parameters to the largest extent by making full use of the limited information in remote sensing data, it is necessary to understand what the information flow in quanti...In order to minimize uncertainty of the inversed parameters to the largest extent by making full use of the limited information in remote sensing data, it is necessary to understand what the information flow in quantitative remote sensing model inversion is, thus control the information flow. Aiming at this, the paper takes the linear kernel-driven model inversion as an example. At first, the information flow in different inversion methods is calculated and analyzed, then the effect of information flow controlled by multi-stage inversion strategy is studied, finally, an information matrix based on USM is defined to control information flow in inversion. It shows that using Shannon entropy decrease of the inversed parameters can express information flow more properly. Changing the weight of a priori knowledge in inversion or fixing parameters and partitioning datasets in multi-stage inversion strategy can control information flow. In regularization inversion of remote sensing, information matrix based on USM may be a better tool for quantitatively controlling information flow.展开更多
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st...A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.展开更多
基金This work was supported by the Special Funds for the Major State Basic Research Project(Grant No.G2000077903)the National Natural Science Foundation of China(Grant No.40171068).
文摘In order to minimize uncertainty of the inversed parameters to the largest extent by making full use of the limited information in remote sensing data, it is necessary to understand what the information flow in quantitative remote sensing model inversion is, thus control the information flow. Aiming at this, the paper takes the linear kernel-driven model inversion as an example. At first, the information flow in different inversion methods is calculated and analyzed, then the effect of information flow controlled by multi-stage inversion strategy is studied, finally, an information matrix based on USM is defined to control information flow in inversion. It shows that using Shannon entropy decrease of the inversed parameters can express information flow more properly. Changing the weight of a priori knowledge in inversion or fixing parameters and partitioning datasets in multi-stage inversion strategy can control information flow. In regularization inversion of remote sensing, information matrix based on USM may be a better tool for quantitatively controlling information flow.
基金supported by the National Natural Science Foundation of China(11502288)the Natural Science Foundation of Hunan Province(2016JJ3019)+1 种基金the Aeronautical Science Foundation of China(2017ZA88001)the Scientific Research Project of National University of Defense Technology(ZK17-03-32)
文摘A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.