With the development of modern society,the requirement for energy has become increasingly important on a global scale.Therefore,the exploration of novel materials for renewable energy technologies is urgently needed.T...With the development of modern society,the requirement for energy has become increasingly important on a global scale.Therefore,the exploration of novel materials for renewable energy technologies is urgently needed.Traditional methods are difficult to meet the requirements for materials science due to long experimental period and high cost.Nowadays,machine learning(ML)is rising as a new research paradigm to revolutionize materials discovery.In this review,we briefly introduce the basic procedure of ML and common algorithms in materials science,and particularly focus on latest progress in applying ML to property prediction and materials development for energyrelated fields,including catalysis,batteries,solar cells,and gas capture.Moreover,contributions of ML to experiments are involved as well.We highly expect that this review could lead the way forward in the future development of ML in materials science.展开更多
As a flourishing member of the two-dimen-sional(2D)nanomaterial family,MXenes have shown great potential in various research areas.In recent years,the continued growth of interest in MXene derivatives,2D transition me...As a flourishing member of the two-dimen-sional(2D)nanomaterial family,MXenes have shown great potential in various research areas.In recent years,the continued growth of interest in MXene derivatives,2D transition metal borides(MBenes),has contributed to the emergence of this 2D material as a latecomer.Due to the excellent electrical conductivity,mechanical properties and electrical properties,thus MBenes attract more researchers’interest.Extensive experimental and theoretical studies have shown that they have exciting energy conversion and elec-trochemical storage potential.However,a comprehensive and systematic review of MBenes applications has not been available so far.For this reason,we present a comprehen-sive summary of recent advances in MBenes research.We started by summarizing the latest fabrication routes and excellent properties of MBenes.The focus will then turn to their exciting potential for energy storage and conversion.Finally,a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:21933006China Postdoctral Science Foundation,Grant/Award Number:2019M660055+1 种基金This work was supported by NSFC(21933006)China Postdoctral Science Foundation(2019M660055)in China.
文摘With the development of modern society,the requirement for energy has become increasingly important on a global scale.Therefore,the exploration of novel materials for renewable energy technologies is urgently needed.Traditional methods are difficult to meet the requirements for materials science due to long experimental period and high cost.Nowadays,machine learning(ML)is rising as a new research paradigm to revolutionize materials discovery.In this review,we briefly introduce the basic procedure of ML and common algorithms in materials science,and particularly focus on latest progress in applying ML to property prediction and materials development for energyrelated fields,including catalysis,batteries,solar cells,and gas capture.Moreover,contributions of ML to experiments are involved as well.We highly expect that this review could lead the way forward in the future development of ML in materials science.
基金funding provided by Shanghai Jiao Tong University.
文摘As a flourishing member of the two-dimen-sional(2D)nanomaterial family,MXenes have shown great potential in various research areas.In recent years,the continued growth of interest in MXene derivatives,2D transition metal borides(MBenes),has contributed to the emergence of this 2D material as a latecomer.Due to the excellent electrical conductivity,mechanical properties and electrical properties,thus MBenes attract more researchers’interest.Extensive experimental and theoretical studies have shown that they have exciting energy conversion and elec-trochemical storage potential.However,a comprehensive and systematic review of MBenes applications has not been available so far.For this reason,we present a comprehen-sive summary of recent advances in MBenes research.We started by summarizing the latest fabrication routes and excellent properties of MBenes.The focus will then turn to their exciting potential for energy storage and conversion.Finally,a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.