The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by cons...The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.展开更多
On-demand regulation of molecular weight distribution(MWD)is crucial to influence the properties of polymers.In this work,we reported an organocatalyzed photo-controlled radical polymerization(photo-CRP)from the tosyl...On-demand regulation of molecular weight distribution(MWD)is crucial to influence the properties of polymers.In this work,we reported an organocatalyzed photo-controlled radical polymerization(photo-CRP)from the tosyl chloride initiator by combining two disulfides as chain transfer agents.This novel synthetic protocol allows facile access toward well-defined polymers with tunable MWDs and predetermined molecular weights.Experiments including structural characterization,kinetic investigation and chain-extension polymerization exhibited good chain-growth control for polymers of different dispersities.Given the easy accessibility of the initiating site(sulfonyl chloride)on many aromatic sources,this work presents a promising avenue to modify such substances with polymers of tailored MWDs,chain lengths and repeating units under metal-free and mild conditions driven by light.展开更多
Organoboron reagents have garnered considerable attention due to their distinct properties. In recent years, boronic acids and boronate esters have been important intermediates for cross-coupling reactions and other f...Organoboron reagents have garnered considerable attention due to their distinct properties. In recent years, boronic acids and boronate esters have been important intermediates for cross-coupling reactions and other functional group construction and are often used to synthesize small organic molecules, drugs, and bioactive substances. In this feature article, we encapsulate the strategy of harnessing the unique properties of organoboron reagents to overcome challenges encountered in conventional polymer synthesis. We delve into the synthesis of boron-containing monomers and polymer materials, unraveling the unique attributes of these newfound polymers while offering innovative insights into their application within recyclable or reprocessable materials. We develop organoboron-based photocatalysts, employing their inner-sphere electron transfer(ISET) mechanisms to initiate controlled radical polymerization. We utilize alkylborane to initiate controlled radical polymerization and further designed B-alkylcatecholboranes to prepare ultra-high molecular weight polymers. Notably, we also propose a liquid-phase synthesis method based on organoboron tags and apply it to the precise synthesis of sequence-controlled conjugated polymers.These advancements open up new frontiers in the realm of polymer science, and the versatility and potential of organoboron reagents in polymer synthesis continue to inspire exciting research endeavors.展开更多
Mechanistic transformation approach has been widely applied in polymer synthesis due to its unique feature combining structurally different polymers prepared by different polymerization mechanisms.Reported methods for...Mechanistic transformation approach has been widely applied in polymer synthesis due to its unique feature combining structurally different polymers prepared by different polymerization mechanisms.Reported methods for the formation of block and graft copolymers through mechanistic transformation involve almost all polymerizations modes.However,certain polymerization processes require extensive purification processes,which can be time-consuming and problematic.Recent developments on controlled/living polymerizations involving radical and cationic mechanisms with the ability to control molecular weight and functionality led to new pathways for mechanistic transformations.In this mini-review,we systematically discussed relevant advances in the field through three main titles namely(i)from radical to cationic mechanism,(ii)from cationic to radical mechanism,and(iii)application of specific catalyst systems for both radical and cationic polymerizations.展开更多
The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained poly...The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).展开更多
文摘The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.
基金This work was supported by the National Natural Science Foundation of China(No.22171051)the Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100,China(No.21TQ007)the Project of the State Key Laboratory of Molecular Engineering of Polymers,Fudan University,China。
文摘On-demand regulation of molecular weight distribution(MWD)is crucial to influence the properties of polymers.In this work,we reported an organocatalyzed photo-controlled radical polymerization(photo-CRP)from the tosyl chloride initiator by combining two disulfides as chain transfer agents.This novel synthetic protocol allows facile access toward well-defined polymers with tunable MWDs and predetermined molecular weights.Experiments including structural characterization,kinetic investigation and chain-extension polymerization exhibited good chain-growth control for polymers of different dispersities.Given the easy accessibility of the initiating site(sulfonyl chloride)on many aromatic sources,this work presents a promising avenue to modify such substances with polymers of tailored MWDs,chain lengths and repeating units under metal-free and mild conditions driven by light.
基金supported by the National Natural Science Foundation of China (22271057, 22201045)the Natural Science Foundation of Shanghai (22ZR1406000)the State Key Laboratory of Molecular Engineering of Polymers,Department of Macromolecular Science, and Fudan University。
文摘Organoboron reagents have garnered considerable attention due to their distinct properties. In recent years, boronic acids and boronate esters have been important intermediates for cross-coupling reactions and other functional group construction and are often used to synthesize small organic molecules, drugs, and bioactive substances. In this feature article, we encapsulate the strategy of harnessing the unique properties of organoboron reagents to overcome challenges encountered in conventional polymer synthesis. We delve into the synthesis of boron-containing monomers and polymer materials, unraveling the unique attributes of these newfound polymers while offering innovative insights into their application within recyclable or reprocessable materials. We develop organoboron-based photocatalysts, employing their inner-sphere electron transfer(ISET) mechanisms to initiate controlled radical polymerization. We utilize alkylborane to initiate controlled radical polymerization and further designed B-alkylcatecholboranes to prepare ultra-high molecular weight polymers. Notably, we also propose a liquid-phase synthesis method based on organoboron tags and apply it to the precise synthesis of sequence-controlled conjugated polymers.These advancements open up new frontiers in the realm of polymer science, and the versatility and potential of organoboron reagents in polymer synthesis continue to inspire exciting research endeavors.
文摘Mechanistic transformation approach has been widely applied in polymer synthesis due to its unique feature combining structurally different polymers prepared by different polymerization mechanisms.Reported methods for the formation of block and graft copolymers through mechanistic transformation involve almost all polymerizations modes.However,certain polymerization processes require extensive purification processes,which can be time-consuming and problematic.Recent developments on controlled/living polymerizations involving radical and cationic mechanisms with the ability to control molecular weight and functionality led to new pathways for mechanistic transformations.In this mini-review,we systematically discussed relevant advances in the field through three main titles namely(i)from radical to cationic mechanism,(ii)from cationic to radical mechanism,and(iii)application of specific catalyst systems for both radical and cationic polymerizations.
文摘The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).