Transient photovoltage(PV) technique was applied to investigate the separation and the transport mechanism of the photo-induced charge carriers on nano-TiO_ 2 film electrode. The positive PV transients were observed w...Transient photovoltage(PV) technique was applied to investigate the separation and the transport mechanism of the photo-induced charge carriers on nano-TiO_ 2 film electrode. The positive PV transients were observed whenever the light was incident from the gauze platinum(top illumination) or the ITO electrode(bottom illumination). This implies that the photo-induced electrons always accumulate near the ITO. Simultaneously, it is found that under the singe pulse illumination, PV transient at bottom illumination needs a shorter time to reach its maximum than that at top illumination. This indicates that the photo-induced carriers are separated faster on TiO_ 2/ITO interface than that in the bulk of the TiO_ 2 film. These demonstrate the existence of the contact potential on the TiO_ 2/ITO interface, with the downward band bending from the TiO_ 2 to ITO, which may cause the excess carriers to be separated by drift. Under the repeated pulses illumination, the PV transients at top illumination remained unchanged, while those at bottom illumination changed significantly. This results from the trapping of the excess electrons on the TiO_ 2/ITO interface.展开更多
Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structur...Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structure (PS) since October 2007. The research focuses on the detection of a non-contact effect of the unexplained “power” of the PS on biosensors (i.e., edible cucumber sections of Cucumis sativus “white spine type”) placed at the top of the PS. In this paper, in particular, we compared the non-contact effect of upper and lower biosensors placed in two layers on the PS apex, and we analyzed the difference of the non-contact effect due to the difference in the layers. The magnitude of the non-contact effect was represented by the calibrated psi index Ψ(E-CAL) calculated from gas concentrations emitted from the biosensors. A method to determine the presence or absence of the non-contact effect by analyzing the gas concentrations was developed by the International Research Institute (IRI). Ψ(E-CAL), which represents the magnitude of the non-contact effect, was the average value of the respective non-contact effect of the upper and lower biosensors stacked in two layers on the PS apex. We conducted the analysis on the assumption that the non-contact effect on the upper and lower biosensors might be different. Therefore, we considered that upper and lower biosensor calibration was required for Ψ(E-CAL), and we introduced a new calibrated psi index Ψ(E-CAL)Layer. Scientifically rigorous experiments to date have detected Ψ(E-CAL) with statistical significance and have demonstrated potential power of the PS (p = 6.0 × 10-3;Welch’s t-test, two-tails, the following p values are also the Welch’s t-test values). Based on data demonstrating the potential power of the PS, we analyzed the non-contact effects on the upper and lower biosensors of the PS apex. We obtained a surprising result that the non-contact effect on the upper biosensors (farther from the PS) was larger than that on the lower bi展开更多
Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional iso...Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.展开更多
Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify the pyramid effects by the PS in...Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify the pyramid effects by the PS into the following two types. (i) The pyramid effects in which the PS converted the test subject’s unexplained energy to affect biosensors when the test subject entered the PS and meditated. (ii) The pyramid effects in which the potential power of the PS affect</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;"> biosensors if the test subject ha</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> not been inside the PS for at least 20 days and the test subject’s unexplained energy was excluded. In this paper, we report new results regarding (ii). As a result of dividing a year according to the four seasons of winter, spring, summer, and autumn and analyzing the pyramid effect of each period, the following points were found. 1) There was a pyramid effect without seasonal variation. The pyramid effect on the lower and upper layers was different throughout the year for the biosensors placed at the PS apex in two layers, regardless of the season. 2) There was a pyramid effect with seasonal variation. The value of the psi index, which indicates the magnitude of the pyramid effect, changed as the seasons changed, while different pyramid effects were maintained on the lower and upper layers. Regarding the change in the pyramid effect depending on the season, the psi index in summer was larger than that in winter in both the lower and upper layers. From these results, we found that there are two types of potential power at the PS apex: seasonal potential power and non-seasonal potential power.展开更多
Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify pyramid effects by the PS into t...Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify pyramid effects by the PS into the following two types: (i) the pyramid effects due to the potential power of the PS and (ii) the pyramid effects due to the influence of the test subject meditating inside the PS. We have been using edible cucumber sections as the biosensors. The pyramid effect existence was clarified by measuring and analyzing the concentration of volatile components released from the biosensors. The biosensors were arranged as a pair: one member of the pair was placed at the PS apex and the other was placed at the calibration control point 8.0 m away from the PS. In this paper, we report a new discovery regarding the type (i) pyramid effects. We discovered a phenomenon considered to be entanglement between the biosensor pairs detecting the pyramid effects. In other words, the biosensors at the PS apex, which were affected by the potential power of the PS, affected the biosensors at the calibration control point. We also confirmed that the effects on the biosensors placed at the calibration control point were not due to the potential power of the PS. Furthermore, we showed that the magnitude of the effect of entanglement changed with the seasons. We expect that our research results will be widely accepted in the future and will become the foundation for a new research field in science, with a wide range of applications.展开更多
文摘Transient photovoltage(PV) technique was applied to investigate the separation and the transport mechanism of the photo-induced charge carriers on nano-TiO_ 2 film electrode. The positive PV transients were observed whenever the light was incident from the gauze platinum(top illumination) or the ITO electrode(bottom illumination). This implies that the photo-induced electrons always accumulate near the ITO. Simultaneously, it is found that under the singe pulse illumination, PV transient at bottom illumination needs a shorter time to reach its maximum than that at top illumination. This indicates that the photo-induced carriers are separated faster on TiO_ 2/ITO interface than that in the bulk of the TiO_ 2 film. These demonstrate the existence of the contact potential on the TiO_ 2/ITO interface, with the downward band bending from the TiO_ 2 to ITO, which may cause the excess carriers to be separated by drift. Under the repeated pulses illumination, the PV transients at top illumination remained unchanged, while those at bottom illumination changed significantly. This results from the trapping of the excess electrons on the TiO_ 2/ITO interface.
文摘Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structure (PS) since October 2007. The research focuses on the detection of a non-contact effect of the unexplained “power” of the PS on biosensors (i.e., edible cucumber sections of Cucumis sativus “white spine type”) placed at the top of the PS. In this paper, in particular, we compared the non-contact effect of upper and lower biosensors placed in two layers on the PS apex, and we analyzed the difference of the non-contact effect due to the difference in the layers. The magnitude of the non-contact effect was represented by the calibrated psi index Ψ(E-CAL) calculated from gas concentrations emitted from the biosensors. A method to determine the presence or absence of the non-contact effect by analyzing the gas concentrations was developed by the International Research Institute (IRI). Ψ(E-CAL), which represents the magnitude of the non-contact effect, was the average value of the respective non-contact effect of the upper and lower biosensors stacked in two layers on the PS apex. We conducted the analysis on the assumption that the non-contact effect on the upper and lower biosensors might be different. Therefore, we considered that upper and lower biosensor calibration was required for Ψ(E-CAL), and we introduced a new calibrated psi index Ψ(E-CAL)Layer. Scientifically rigorous experiments to date have detected Ψ(E-CAL) with statistical significance and have demonstrated potential power of the PS (p = 6.0 × 10-3;Welch’s t-test, two-tails, the following p values are also the Welch’s t-test values). Based on data demonstrating the potential power of the PS, we analyzed the non-contact effects on the upper and lower biosensors of the PS apex. We obtained a surprising result that the non-contact effect on the upper biosensors (farther from the PS) was larger than that on the lower bi
基金supported by the National Natural Science Foundation of China(Grant 11321202)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant 20130101110120)
文摘Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.
文摘Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify the pyramid effects by the PS into the following two types. (i) The pyramid effects in which the PS converted the test subject’s unexplained energy to affect biosensors when the test subject entered the PS and meditated. (ii) The pyramid effects in which the potential power of the PS affect</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;"> biosensors if the test subject ha</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> not been inside the PS for at least 20 days and the test subject’s unexplained energy was excluded. In this paper, we report new results regarding (ii). As a result of dividing a year according to the four seasons of winter, spring, summer, and autumn and analyzing the pyramid effect of each period, the following points were found. 1) There was a pyramid effect without seasonal variation. The pyramid effect on the lower and upper layers was different throughout the year for the biosensors placed at the PS apex in two layers, regardless of the season. 2) There was a pyramid effect with seasonal variation. The value of the psi index, which indicates the magnitude of the pyramid effect, changed as the seasons changed, while different pyramid effects were maintained on the lower and upper layers. Regarding the change in the pyramid effect depending on the season, the psi index in summer was larger than that in winter in both the lower and upper layers. From these results, we found that there are two types of potential power at the PS apex: seasonal potential power and non-seasonal potential power.
文摘Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify pyramid effects by the PS into the following two types: (i) the pyramid effects due to the potential power of the PS and (ii) the pyramid effects due to the influence of the test subject meditating inside the PS. We have been using edible cucumber sections as the biosensors. The pyramid effect existence was clarified by measuring and analyzing the concentration of volatile components released from the biosensors. The biosensors were arranged as a pair: one member of the pair was placed at the PS apex and the other was placed at the calibration control point 8.0 m away from the PS. In this paper, we report a new discovery regarding the type (i) pyramid effects. We discovered a phenomenon considered to be entanglement between the biosensor pairs detecting the pyramid effects. In other words, the biosensors at the PS apex, which were affected by the potential power of the PS, affected the biosensors at the calibration control point. We also confirmed that the effects on the biosensors placed at the calibration control point were not due to the potential power of the PS. Furthermore, we showed that the magnitude of the effect of entanglement changed with the seasons. We expect that our research results will be widely accepted in the future and will become the foundation for a new research field in science, with a wide range of applications.