摘要
Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structure (PS) since October 2007. The research focuses on the detection of a non-contact effect of the unexplained “power” of the PS on biosensors (i.e., edible cucumber sections of Cucumis sativus “white spine type”) placed at the top of the PS. In this paper, in particular, we compared the non-contact effect of upper and lower biosensors placed in two layers on the PS apex, and we analyzed the difference of the non-contact effect due to the difference in the layers. The magnitude of the non-contact effect was represented by the calibrated psi index Ψ(E-CAL) calculated from gas concentrations emitted from the biosensors. A method to determine the presence or absence of the non-contact effect by analyzing the gas concentrations was developed by the International Research Institute (IRI). Ψ(E-CAL), which represents the magnitude of the non-contact effect, was the average value of the respective non-contact effect of the upper and lower biosensors stacked in two layers on the PS apex. We conducted the analysis on the assumption that the non-contact effect on the upper and lower biosensors might be different. Therefore, we considered that upper and lower biosensor calibration was required for Ψ(E-CAL), and we introduced a new calibrated psi index Ψ(E-CAL)Layer. Scientifically rigorous experiments to date have detected Ψ(E-CAL) with statistical significance and have demonstrated potential power of the PS (p = 6.0 × 10-3;Welch’s t-test, two-tails, the following p values are also the Welch’s t-test values). Based on data demonstrating the potential power of the PS, we analyzed the non-contact effects on the upper and lower biosensors of the PS apex. We obtained a surprising result that the non-contact effect on the upper biosensors (farther from the PS) was larger than that on the lower bi
Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structure (PS) since October 2007. The research focuses on the detection of a non-contact effect of the unexplained “power” of the PS on biosensors (i.e., edible cucumber sections of Cucumis sativus “white spine type”) placed at the top of the PS. In this paper, in particular, we compared the non-contact effect of upper and lower biosensors placed in two layers on the PS apex, and we analyzed the difference of the non-contact effect due to the difference in the layers. The magnitude of the non-contact effect was represented by the calibrated psi index Ψ(E-CAL) calculated from gas concentrations emitted from the biosensors. A method to determine the presence or absence of the non-contact effect by analyzing the gas concentrations was developed by the International Research Institute (IRI). Ψ(E-CAL), which represents the magnitude of the non-contact effect, was the average value of the respective non-contact effect of the upper and lower biosensors stacked in two layers on the PS apex. We conducted the analysis on the assumption that the non-contact effect on the upper and lower biosensors might be different. Therefore, we considered that upper and lower biosensor calibration was required for Ψ(E-CAL), and we introduced a new calibrated psi index Ψ(E-CAL)Layer. Scientifically rigorous experiments to date have detected Ψ(E-CAL) with statistical significance and have demonstrated potential power of the PS (p = 6.0 × 10-3;Welch’s t-test, two-tails, the following p values are also the Welch’s t-test values). Based on data demonstrating the potential power of the PS, we analyzed the non-contact effects on the upper and lower biosensors of the PS apex. We obtained a surprising result that the non-contact effect on the upper biosensors (farther from the PS) was larger than that on the lower bi