In this paper, the authors investigate compound action potentials formed when the underlying tract's axons have current-mediated coupling amongst themselves, and no field-mediated coupling. The key finding of the ...In this paper, the authors investigate compound action potentials formed when the underlying tract's axons have current-mediated coupling amongst themselves, and no field-mediated coupling. The key finding of the paper is that, for the case of biophysically inhomogeneous axon tracts, the compound action potential is governed by a Hodgkin-Huxley like equation itself in certain cases. The paper extends an earlier result for the identical axon case.展开更多
ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtractio...ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtraction paradigm or alternating polarity paradigm.Three kinds of FDA approved cochlear implants support ECAP testing.This article is to summarize the clinical application of ECAP lest.ECAP test after insertion of electrode during implant operation has been widely used during cochlear implant surgery.In recent years.ECAP thresholds are also used to estimate the T levels and C levels helping programming.However,correlation between ECAP thresholds and psychophysical thresholds is affected by many factors.So far,ECAPs cannot yet be a good indicator of post-operative hearing and speech performance.展开更多
Objective To investigate the prophylactic effect of low calcium concentration perilymph on noise-induced hearing loss. Methods Forty guinea pigs with normal hearing weighing 250-350 g were assigned to five groups (8 i...Objective To investigate the prophylactic effect of low calcium concentration perilymph on noise-induced hearing loss. Methods Forty guinea pigs with normal hearing weighing 250-350 g were assigned to five groups (8 in each group): (1) Ca2+-deficient perilymph perfusion (CDP) for 2 h; (2) white noise (120 dB SPL) exposure (WNE) only for 1 h, (3) combination of calcium-deficient perilymph perfusion and white noise (120 dB SPL) exposure (WNE+CDP); (4) normal artificial perilymph (NAP) perfusion for 2 h; and (5) white noise exposure + normal artificial perilymph perfusion (WNE+NAP) for 2 h. Compound action potentials (CAP) evoked by click was recorded from round window every 15 min. The cochleae from 5 animals in each group were examined with scanning electron microscope. Results The CAP for group 1 experienced a threshold shift (TS) of 15-26 dB, while group 2 yielded a 46-59 dB TS and group 3 a 37-45 dB TS; no threshold shift occurred in group 4. The CAP TS in group 5 was 33-64 dB. The CAP TS of group 3 was less than that of group 2. After one hour of noise exposure, the CAP TS of group 3 were 45.92±2.90 dB and 59.30±3.95dB in group 2. There were significant differences (P<0.05) between groups 3 and 2. The CAP TS of group 3 was less than that of group 5 at the points of 1, 1.5 and 2 h after noise exposure. There was a significant difference between groups 3 and 5 (P<0.01). Stereocilia of 89 OHC3 were in disarray in five cochleae after noise exposure in group 2. The cuticular plates of 8 OHC2,3 sank and the stereocilia became fused in only one animal cochlea after noise exposure in group 3 combined with low calcium perilymph perfusion. Conclusions Low calcium concentration appears to participate in preventing noise-induced hearing loss and the rising of calcium concentrations in inner hair cells after noise exposure, which may have been due to the opening of calcium channels in inner hair cells during noise exposure. The mechanism of the prophylactic effect might be caused by a lower calcium concentration in inner展开更多
文摘In this paper, the authors investigate compound action potentials formed when the underlying tract's axons have current-mediated coupling amongst themselves, and no field-mediated coupling. The key finding of the paper is that, for the case of biophysically inhomogeneous axon tracts, the compound action potential is governed by a Hodgkin-Huxley like equation itself in certain cases. The paper extends an earlier result for the identical axon case.
基金supported by grants from the National Basic Research Program of China(973 Program)(#2012CB967900)Science and Technology Innovation Nursery Foundation of PLA General Hospital(13KMM14)Clinical Research Supporting Foundation of PLA General Hospital(2012FC-TSYS-3056)
文摘ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtraction paradigm or alternating polarity paradigm.Three kinds of FDA approved cochlear implants support ECAP testing.This article is to summarize the clinical application of ECAP lest.ECAP test after insertion of electrode during implant operation has been widely used during cochlear implant surgery.In recent years.ECAP thresholds are also used to estimate the T levels and C levels helping programming.However,correlation between ECAP thresholds and psychophysical thresholds is affected by many factors.So far,ECAPs cannot yet be a good indicator of post-operative hearing and speech performance.
基金ThisprojectwassupportedbyagrantfromtheNationalNaturalScienceFoundationofChina (No 3 9870 797)
文摘Objective To investigate the prophylactic effect of low calcium concentration perilymph on noise-induced hearing loss. Methods Forty guinea pigs with normal hearing weighing 250-350 g were assigned to five groups (8 in each group): (1) Ca2+-deficient perilymph perfusion (CDP) for 2 h; (2) white noise (120 dB SPL) exposure (WNE) only for 1 h, (3) combination of calcium-deficient perilymph perfusion and white noise (120 dB SPL) exposure (WNE+CDP); (4) normal artificial perilymph (NAP) perfusion for 2 h; and (5) white noise exposure + normal artificial perilymph perfusion (WNE+NAP) for 2 h. Compound action potentials (CAP) evoked by click was recorded from round window every 15 min. The cochleae from 5 animals in each group were examined with scanning electron microscope. Results The CAP for group 1 experienced a threshold shift (TS) of 15-26 dB, while group 2 yielded a 46-59 dB TS and group 3 a 37-45 dB TS; no threshold shift occurred in group 4. The CAP TS in group 5 was 33-64 dB. The CAP TS of group 3 was less than that of group 2. After one hour of noise exposure, the CAP TS of group 3 were 45.92±2.90 dB and 59.30±3.95dB in group 2. There were significant differences (P<0.05) between groups 3 and 2. The CAP TS of group 3 was less than that of group 5 at the points of 1, 1.5 and 2 h after noise exposure. There was a significant difference between groups 3 and 5 (P<0.01). Stereocilia of 89 OHC3 were in disarray in five cochleae after noise exposure in group 2. The cuticular plates of 8 OHC2,3 sank and the stereocilia became fused in only one animal cochlea after noise exposure in group 3 combined with low calcium perilymph perfusion. Conclusions Low calcium concentration appears to participate in preventing noise-induced hearing loss and the rising of calcium concentrations in inner hair cells after noise exposure, which may have been due to the opening of calcium channels in inner hair cells during noise exposure. The mechanism of the prophylactic effect might be caused by a lower calcium concentration in inner