The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and...The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.展开更多
The special electronic configuration of phosphorus atoms endows organophosphorus reagents with unique chemical properties,which enable them to be used to catalyze various organic reactions,such as the Wittig reaction,...The special electronic configuration of phosphorus atoms endows organophosphorus reagents with unique chemical properties,which enable them to be used to catalyze various organic reactions,such as the Wittig reaction,Staudinger reaction,Appel reaction and Mitsunobu reaction.However,the catalytic process will be accompanied by the generation of large amounts of phosphine oxide waste,resulting in the reduction of atom utilization of the reaction,and it is difficult to separate the product.Therefore,it is essential to explore a greener and more sustainable organic synthesis route based on the catalytic cycle of phosphine oxide as a model.This paper summarizes the catalytic cycle and recycling of phosphorus with or without reducing agents and reviews the related developments in recent decades:from the addition of stoichiometric strong reducing agents,to the design of ring phosphines with specific structures,to the development of new energy inputs(electrochemistry),to the addition of a series of compounds to activate the P(V)––O double bond,driving the catalytic cycle of phosphine oxide through chemical transformation.This review also points out the development potential of this field in the future,which will promote its development and progress in a greener direction.展开更多
基金Financial support by Dual Initiative Project of Jiangsu Province and Changzhou University is gratefully acknowledgedSample analysis supported by Analysis and Testing Center,NERC Biomass of Changzhou University was also greatly acknowledged.
文摘The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.
基金support of this work from the National Science Foundation of China(Nos.21602123,21702121 and 21971143)the 111 Project(No.D20015)the Foundation of Hubei Three Gorges Laboratory(No.SC213008).
文摘The special electronic configuration of phosphorus atoms endows organophosphorus reagents with unique chemical properties,which enable them to be used to catalyze various organic reactions,such as the Wittig reaction,Staudinger reaction,Appel reaction and Mitsunobu reaction.However,the catalytic process will be accompanied by the generation of large amounts of phosphine oxide waste,resulting in the reduction of atom utilization of the reaction,and it is difficult to separate the product.Therefore,it is essential to explore a greener and more sustainable organic synthesis route based on the catalytic cycle of phosphine oxide as a model.This paper summarizes the catalytic cycle and recycling of phosphorus with or without reducing agents and reviews the related developments in recent decades:from the addition of stoichiometric strong reducing agents,to the design of ring phosphines with specific structures,to the development of new energy inputs(electrochemistry),to the addition of a series of compounds to activate the P(V)––O double bond,driving the catalytic cycle of phosphine oxide through chemical transformation.This review also points out the development potential of this field in the future,which will promote its development and progress in a greener direction.