Objective: To study, through blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI), the cerebral activated areas evoked by electro-acupuncturing (EA) the right Hegu point (LI4) or non-a...Objective: To study, through blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI), the cerebral activated areas evoked by electro-acupuncturing (EA) the right Hegu point (LI4) or non-acupoint points on the face, and through comparing their similarities and differences, to speculate on the specific cerebral areas activated by stimulating LI4, for exploring the mechanism of its effect in potential clinical application. Methods: EA was applied at volunteers' right LI4 (of 9 subjects in the LI4 group) and facial non-acupoint points (of 5 subjects in the control group), and whole brain 3-dimensional T1 anatomical imaging of high resolution 1 × 1 × 1 mm^3 used was performed with clustered stimulatory mode adopted by BOLD fMRI. Pretreatment and statistical t-test were conducted on the data by SPM2 software, then the statistical parameters were superimposed to the 3-dimensional anatomical imaging. Results: Data from 3 testees of the 9 subjects in the LI4 group were given up eventually because they were unfit to the demand due to different causes such as movement of patients' location or machinery factors. Statistical analysis showed that signal activation or deactivation was found in multiple cerebral areas in 6 subjects of LI4 group and 5 subjects of the control group (P〈0.01). In the LI4 group, the areas which showed signal activation were: midline nuclear group of thalamus, left supra marginal gyrus, left supra temporal gyrus, right precuneous lobe, bilateral temporal pole, left precentral gyrus and left cerebellum; those which showed signal deactivation were: bilateral hippocampus, parahippocampal gyrus, amygdala body area, rostral side/audal side of cingulate gyrus, prefrontal lobe and occipital lobe as well as left infratemporal gyrus. In the control group, areas which showed signal activation were: bilateral frontal lobe, postcentral gyrus, Reil's island lobe, primary somato-sensory cortex, cingulate gyrus, superior temporal gyrus, occipital c展开更多
Propagated sensation along the meridian can occur when acupoints are stimulated by acupuncture or electrical impulses. In this study, participants with notable propagated sensation along the me- ridian were given elec...Propagated sensation along the meridian can occur when acupoints are stimulated by acupuncture or electrical impulses. In this study, participants with notable propagated sensation along the me- ridian were given electro-acupuncture at the Jianyu (LI15) acupoint of the large intestine meridian. When participants stated that the sensation reached the back of their hand, reguJar nervous system action discharge was examined using a physiological recording electrode placed on the superficial branch of the radial nerve. The topographical maps of brain-evoked potential in the primary cortical somatosensory area were also detected. When Guangming (GB37) acupoint in the lower limb and Hegu (LI4) acupoint in the upper limb were stimulated, subjects without propagated sensation along the meridian exhibited a high potential reaction in the corresponding area of the brain cortical somatosensory area. For subjects with a notable propagated sensation along the meridian, the re- action area was larger and extended into the face representative area. These electrophysiological measures directly prove the existence of propagated sensation along the meridian, and the periph- eral stimulated site is consistent with the corresponding primary cortical somatosensory area, which presents a high potential reaction.展开更多
基金Supported by the National Natural Science Foundation (No. 90209031)
文摘Objective: To study, through blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI), the cerebral activated areas evoked by electro-acupuncturing (EA) the right Hegu point (LI4) or non-acupoint points on the face, and through comparing their similarities and differences, to speculate on the specific cerebral areas activated by stimulating LI4, for exploring the mechanism of its effect in potential clinical application. Methods: EA was applied at volunteers' right LI4 (of 9 subjects in the LI4 group) and facial non-acupoint points (of 5 subjects in the control group), and whole brain 3-dimensional T1 anatomical imaging of high resolution 1 × 1 × 1 mm^3 used was performed with clustered stimulatory mode adopted by BOLD fMRI. Pretreatment and statistical t-test were conducted on the data by SPM2 software, then the statistical parameters were superimposed to the 3-dimensional anatomical imaging. Results: Data from 3 testees of the 9 subjects in the LI4 group were given up eventually because they were unfit to the demand due to different causes such as movement of patients' location or machinery factors. Statistical analysis showed that signal activation or deactivation was found in multiple cerebral areas in 6 subjects of LI4 group and 5 subjects of the control group (P〈0.01). In the LI4 group, the areas which showed signal activation were: midline nuclear group of thalamus, left supra marginal gyrus, left supra temporal gyrus, right precuneous lobe, bilateral temporal pole, left precentral gyrus and left cerebellum; those which showed signal deactivation were: bilateral hippocampus, parahippocampal gyrus, amygdala body area, rostral side/audal side of cingulate gyrus, prefrontal lobe and occipital lobe as well as left infratemporal gyrus. In the control group, areas which showed signal activation were: bilateral frontal lobe, postcentral gyrus, Reil's island lobe, primary somato-sensory cortex, cingulate gyrus, superior temporal gyrus, occipital c
基金supported by the General Project of the National Natural Science Foundation of China,No.30973720the Natural Science Foundation of Fujian Province in China,No.2011J01192Free Topics of Fujian Provincial Science & Technology Ministry in China,No.2012fjzyyk-6
文摘Propagated sensation along the meridian can occur when acupoints are stimulated by acupuncture or electrical impulses. In this study, participants with notable propagated sensation along the me- ridian were given electro-acupuncture at the Jianyu (LI15) acupoint of the large intestine meridian. When participants stated that the sensation reached the back of their hand, reguJar nervous system action discharge was examined using a physiological recording electrode placed on the superficial branch of the radial nerve. The topographical maps of brain-evoked potential in the primary cortical somatosensory area were also detected. When Guangming (GB37) acupoint in the lower limb and Hegu (LI4) acupoint in the upper limb were stimulated, subjects without propagated sensation along the meridian exhibited a high potential reaction in the corresponding area of the brain cortical somatosensory area. For subjects with a notable propagated sensation along the meridian, the re- action area was larger and extended into the face representative area. These electrophysiological measures directly prove the existence of propagated sensation along the meridian, and the periph- eral stimulated site is consistent with the corresponding primary cortical somatosensory area, which presents a high potential reaction.