It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,...It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,a closed determinant expression for the degenerate Appell polynomials is derived.The determinant forms for the degenerate Bernoulli and Euler polynomials are also investigated.A new class of the degenerate Hermite-Appell polynomials is investigated and some novel identities for these polynomials are established.The degenerate Hermite-Bernoulli and degenerate Hermite-Euler polynomials are considered as special cases of the degenerate Hermite-Appell polynomials.Further,by using Mathematica,we draw graphs of degenerate Hermite-Bernoulli polynomials for different values of indices.The zeros of these polynomials are also explored and their distribution is presented.展开更多
In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions...In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given.展开更多
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) appli...Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.展开更多
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi...Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.展开更多
In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and dedu...In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases.展开更多
We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second...We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.展开更多
By using Fubini theorem or Tonelli theorem, we find that the zeta function value at 2 is equal to a special integral. Furthermore, we find that this special integral is two times of another special integral. By using ...By using Fubini theorem or Tonelli theorem, we find that the zeta function value at 2 is equal to a special integral. Furthermore, we find that this special integral is two times of another special integral. By using this fact we give an easy way to calculate the value of the alternating sum of without using the Fourier expansion. Also, we discuss the relationship between Genocchi numbers and Bernoulli numbers and get some results about Bernoulli polynomials.展开更多
文摘It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,a closed determinant expression for the degenerate Appell polynomials is derived.The determinant forms for the degenerate Bernoulli and Euler polynomials are also investigated.A new class of the degenerate Hermite-Appell polynomials is investigated and some novel identities for these polynomials are established.The degenerate Hermite-Bernoulli and degenerate Hermite-Euler polynomials are considered as special cases of the degenerate Hermite-Appell polynomials.Further,by using Mathematica,we draw graphs of degenerate Hermite-Bernoulli polynomials for different values of indices.The zeros of these polynomials are also explored and their distribution is presented.
基金funded by Research Deanship at the University of Ha’il,Saudi Arabia,through Project No.RG-21144.
文摘In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given.
文摘Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.
文摘Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.
基金Supported by the PCSIRT of Education of China(IRT0621)Supported by the Innovation Program of Shanghai Municipal Education Committee of China(08ZZ24)Supported by the Henan Innovation Project for University Prominent Research Talents of China(2007KYCX0021)
文摘In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(No.2020R1F1A1A01071564).
文摘We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.
文摘By using Fubini theorem or Tonelli theorem, we find that the zeta function value at 2 is equal to a special integral. Furthermore, we find that this special integral is two times of another special integral. By using this fact we give an easy way to calculate the value of the alternating sum of without using the Fourier expansion. Also, we discuss the relationship between Genocchi numbers and Bernoulli numbers and get some results about Bernoulli polynomials.