期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Bernoulli多项式和Euler多项式的关系 被引量:28
1
作者 雒秋明 《数学的实践与认识》 CSCD 北大核心 2003年第3期119-122,共4页
本文给出了 Bernoulli- Euler数之间的关系和 Bernoulli- Euler多项式之间的关系 ,从而深化和补充了有关文献中的相关结果 .
关键词 bernoulli多项式 EULER多项式 bernoulli EULER数
原文传递
高阶Bernoulli数和高阶Bernoulli多项式 被引量:3
2
作者 雒秋明 郭田芬 马韵新 《河南科学》 2004年第3期285-289,共5页
得到了高阶Bernoulli数和高阶Bernoulli多项式的若干新结果
关键词 bernoulli 高阶bernoulli bernoulli多项式 高阶bernoulli多项式 递推公式
下载PDF
一类包含Bernoulli多项式与Euler多项式的积的和 被引量:4
3
作者 王念良 《纺织高校基础科学学报》 CAS 2004年第4期292-295,共4页
利用初等方法给出了一类关于 Bernoulli数 ,Euler数 ;Bernoulli多项式 。
关键词 bernoulli bernoulli多项式 EULER数 Fuler多项式 乘积的和
下载PDF
AN ALGEBRAIC APPROACH TO DEGENERATE APPELL POLYNOMIALS AND THEIR HYBRID FORMS VIA DETERMINANTS
4
作者 Mumtaz RIYASAT Tabinda NAHID Subuhi KHAN 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期719-735,共17页
It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,... It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,a closed determinant expression for the degenerate Appell polynomials is derived.The determinant forms for the degenerate Bernoulli and Euler polynomials are also investigated.A new class of the degenerate Hermite-Appell polynomials is investigated and some novel identities for these polynomials are established.The degenerate Hermite-Bernoulli and degenerate Hermite-Euler polynomials are considered as special cases of the degenerate Hermite-Appell polynomials.Further,by using Mathematica,we draw graphs of degenerate Hermite-Bernoulli polynomials for different values of indices.The zeros of these polynomials are also explored and their distribution is presented. 展开更多
关键词 degenerate bernoulli polynomials degenerate Appell polynomials determinant expressions degenerate hybrid Appell polynomials
下载PDF
A Note on Bell-Based Bernoulli and Euler Polynomials of Complex Variable
5
作者 N.Alam W.A.Khan +5 位作者 S.Obeidat G.Muhiuddin N.S.Diab H.N.Zaidi A.Altaleb L.Bachioua 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期187-209,共23页
In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions... In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given. 展开更多
关键词 bernoulli polynomials euler polynomials bell polynomials stirling numbers
下载PDF
关于Bernoulli和Euler多项式的一个注记 被引量:3
6
作者 巫朝霞 何圆 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2012年第6期604-606,共3页
研究了Bernoulli多项式和Euler多项式的循环关系.运用Bernoulli多项式、Euler多项式和第二类Stirling数的基本性质及初等方法,给出了Bernoulli多项式和Euler多项式的两个封闭公式.
关键词 bernoulli多项式 EULER多项式 封闭公式
下载PDF
The Powers Sums, Bernoulli Numbers, Bernoulli Polynomials Rethinked 被引量:1
7
作者 Do Tan Si 《Applied Mathematics》 2019年第3期100-112,共13页
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) appli... Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums. 展开更多
关键词 bernoulli Numbers bernoulli polynomials POWERS SUMS Faulhaber CONJECTURE Shift OPERATOR OPERATOR Calculus
下载PDF
Selection of Coherent and Concise Formulae on Bernoulli Polynomials-Numbers-Series and Power Sums-Faulhaber Problems
8
作者 Do Tan Si 《Applied Mathematics》 2022年第10期799-821,共23页
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi... Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums. 展开更多
关键词 bernoulli Numbers bernoulli polynomials Powers Sums Zeta Function Faulhaber Conjecture
下载PDF
Some Remarks for the Relationships between the Generalized Bernoulli and Euler Polynomials 被引量:1
9
作者 LUO Qiu-ming GE Shu-mei 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期16-22,共7页
In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and dedu... In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases. 展开更多
关键词 bernoulli polynomials and numbers Euler polynomials and numbers generalized bernoulli polynomials and numbers generalized Euler polynomials and numbers generating functions Srivastava-Pinter's addition theorem
下载PDF
Bernoulli多项式系数的绝对值和及其性质 被引量:1
10
作者 王念良 赵健 刘端森 《商洛师范专科学校学报》 2005年第F10期70-72,共3页
利用Bernoulli多项式的性质,研究了多项式系数的绝对值和的有关性质,得到了关于Bernoulli多项式系数绝对值和的表达式及一些恒等式.
关键词 bernoulli多项式 bernoulli多项式系数 绝对值和 恒等式
下载PDF
Some Identities of the Higher-Order Type 2 Bernoulli Numbers and Polynomials of the Second Kind 被引量:1
11
作者 Taekyun Kim Dae SanKim +2 位作者 Dmitry V.Dolgy Si-Hyeon Lee Jongkyum Kwon 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1121-1132,共12页
We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second... We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates. 展开更多
关键词 bernoulli polynomials of the second kind higher-order type 2 bernoulli polynomials of the second kind higher-order conjugate type 2 bernoulli polynomials of the second kind
下载PDF
Apostol-Bernoulli多项式的一个新公式 被引量:1
12
作者 郑玉敏 李希臣 雒秋明 《数学的实践与认识》 CSCD 北大核心 2007年第11期148-151,共4页
我们得到Apostol-Bernoulli多项式的一个用Gauss超几何函数表示的新公式,并给出了它的一些特殊情况和应用.
关键词 bernoulli bernoulli多项式 Apostol-bernoulli Apostol-bernoulli多项式 Gauss超几何函数 第二类STIRLING数
原文传递
关于Fibonacci多项式与Lucas多项式乘积的恒等式 被引量:1
13
作者 杨瑞妮 王晓瑛 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2015年第1期22-25,共4页
利用广义Fibonacci多项式Fn(x,y)和Lucas多项式Ln(x,y)的性质,研究组合和式Rn(x,y;tx2).结合Bernoulli和Euler多项式的生成函数,给出Fn(x,y)和Ln(x,y)的两个恒等式,进一步推广了Velasco的结果.
关键词 FIBONACCI多项式 LUCAS多项式 bernoulli多项式 EULER多项式 恒等式
下载PDF
Apostol-Bernoulli多项式和Gauss超几何函数之间的关系
14
作者 杨梦龙 李希臣 《河南机电高等专科学校学报》 CAS 2006年第4期109-110,128,共3页
我们得到Apostol-Bernoulli多项式的一个用Gauss超几何函数表示的新公式,并给出了它的一些特殊情况和应用。
关键词 bernoulli bernoulli多项式 Apostol--bernoulli Apostol--bernoulli多项式 Gauss超几何函数 二类Stirling数
下载PDF
The Connection between the Basel Problem and a Special Integral
15
作者 Haifeng Xu Jiuru Zhou 《Applied Mathematics》 2014年第16期2570-2584,共15页
By using Fubini theorem or Tonelli theorem, we find that the zeta function value at 2 is equal to a special integral. Furthermore, we find that this special integral is two times of another special integral. By using ... By using Fubini theorem or Tonelli theorem, we find that the zeta function value at 2 is equal to a special integral. Furthermore, we find that this special integral is two times of another special integral. By using this fact we give an easy way to calculate the value of the alternating sum of without using the Fourier expansion. Also, we discuss the relationship between Genocchi numbers and Bernoulli numbers and get some results about Bernoulli polynomials. 展开更多
关键词 BASEL PROBLEM ZETA Function bernoulli NUMBERS bernoulli polynomials
下载PDF
关于Hurwitz zeta-函数的一组恒等式
16
作者 杨存典 刘端森 李超 《陕西科技大学学报(自然科学版)》 2007年第2期133-135,共3页
对Hurwitz zeta-函数的性质进行了研究,以期解决解析数论中该函数积和的计算问题.运用初等数论和解析数论的方法,根据Bernoulli数多项式、k阶Bernoulli数多项式的性质以及Hurwitz zeta-函数与Bernoulli多项式之间的关系,得到了Hurwitz z... 对Hurwitz zeta-函数的性质进行了研究,以期解决解析数论中该函数积和的计算问题.运用初等数论和解析数论的方法,根据Bernoulli数多项式、k阶Bernoulli数多项式的性质以及Hurwitz zeta-函数与Bernoulli多项式之间的关系,得到了Hurwitz zeta-函数以及其特殊情况Riemann zeta-函数的一组恒等式. 展开更多
关键词 bernoulli多项式 k阶bernoulli多项式 Hurwitzzeta-函数 Riemannzeta-函数 恒等式
下载PDF
Apostol-Bernoulli多项式和Hurwitz Zeta函数
17
作者 雒秋明 付立志 《商丘师范学院学报》 CAS 2005年第5期32-35,共4页
我们得到Apostol-Bernoulli多项式(看T.M.Apostol,[Pacific J.Math,1(1951)161-167])用HurwitzZeta函数表示的一个新公式,并给出了它的一个特殊情况.
关键词 bernoulli bernoulli多项式 Apostol-bernoulli Apostol-BernouUi多项式 HURWITZ ZETA函数
下载PDF
三个高阶伯努利多项式与等幂和多项式的对称等式
18
作者 伍鸣 《金陵科技学院学报》 2014年第1期1-4,共4页
推广了一个关于伯努利数与等幂和多项式的对称关系式,获得了关于三个高阶伯努利多项式与等幂和多项式的对称等式。
关键词 伯努利数 伯努利多项式 高阶伯努利多项式 等幂和多项式
下载PDF
渐近于Hermite多项式的双正交系统 被引量:1
19
作者 许艳 《中国科学:数学》 CSCD 北大核心 2014年第4期409-422,共14页
本文利用渐近于Gauss函数的函数类?,给出渐近于Hermite正交多项式的一类Appell多项式的构造方法,使得该序列与?的n阶导数之间构成了一组双正交系统.利用此结果,本文得到多种正交多项式和组合多项式的渐近性质.特别地,由N阶B样条所生成的... 本文利用渐近于Gauss函数的函数类?,给出渐近于Hermite正交多项式的一类Appell多项式的构造方法,使得该序列与?的n阶导数之间构成了一组双正交系统.利用此结果,本文得到多种正交多项式和组合多项式的渐近性质.特别地,由N阶B样条所生成的Appell多项式序列恰为N阶Bernoulli多项式.从而,Bernoulli多项式与B样条的导函数之间构成了一组双正交系统,且标准化之后的Bernoulli多项式的渐近形式为Hermite多项式.由二项分布所生成的Appell序列为Euler多项式,从而,Euler多项式与二项分布的导函数之间构成一组双正交系统,且标准化之后的Euler多项式渐近于Hermite多项式.本文给出Appell序列的生成函数满足的尺度方程的充要条件,给出渐近于Hermite多项式的函数列的判定定理.应用该定理,验证广义Buchholz多项式、广义Laguerre多项式和广义Ultraspherical(Gegenbauer)多项式渐近于Hermite多项式的性质,从而验证超几何多项式的Askey格式的成立. 展开更多
关键词 Appell序列 Askey格式 HERMITE多项式 B样条 bernoulli多项式
原文传递
关于贝努利多项式和盖根堡多项式乘积的和 被引量:1
20
作者 王念良 《商洛师范专科学校学报》 2004年第2期10-11,共2页
利用初等方法给出了一类包含贝努利多项式与盖根堡多项式乘积和的恒等式及推论.
关键词 贝努利多项式 盖根堡多项式 多项式乘积 求和公式 恒等式
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部