This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching ...This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC).展开更多
基金supported in part by the State Key Program of National Natural Science Foundation of China (No.U1866210)Young Elite Scientists Sponsorship Program by CSEE (No.CSEE-YESS-2018007)Science and Technology Projects in Guangzhou (No.202102020221)。
文摘This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC).