In this paper we study the stability of(p,Y)-operator frames.We firstly discuss the relations between p-Bessel sequences(or p-frames) and(p,Y)-operator Bessel sequences(or(p,Y)-operator frames).Through defin...In this paper we study the stability of(p,Y)-operator frames.We firstly discuss the relations between p-Bessel sequences(or p-frames) and(p,Y)-operator Bessel sequences(or(p,Y)-operator frames).Through defining a new union,we prove that adding some elements to a given(p,Y)-operator frame,the resulted sequence will be still a(p,Y)-operator frame.We obtain a necessary and sufficient condition for a sequence of compound operators to be a(p,Y)operator frame.Lastly,we show that(p,Y)-operator frames for X are stable under some small perturbations.展开更多
In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or a...In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or an Xd-frame for a Banach space X under perturbation. These results generalize and improve the related works of Balan, Casazza, Christensen, Stoeva and Jian et al.展开更多
Grochenig and Balan, Casazza, Heil, and Landau introduced the concepts of localization. The concepts were used to Gabor frames, wavelet frames and sampling theorem in recent years. Here they are applied to the frame o...Grochenig and Balan, Casazza, Heil, and Landau introduced the concepts of localization. The concepts were used to Gabor frames, wavelet frames and sampling theorem in recent years. Here they are applied to the frame of exponential windows with the conclusion that the frame of exponential windows is a Banach frame for a kind of Banach spaces, and the conclusion is also obtained about the relationship between frame bounds, frame density, measure and density of indexing set.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10571113 10871224)+2 种基金the Science and Technology Program of Shaanxi Province (Grant No. 2009JM1011)the Fundmental Research Funds forthe Central Universities (Grant Nos. GK201002006 GK201002012)
文摘In this paper we study the stability of(p,Y)-operator frames.We firstly discuss the relations between p-Bessel sequences(or p-frames) and(p,Y)-operator Bessel sequences(or(p,Y)-operator frames).Through defining a new union,we prove that adding some elements to a given(p,Y)-operator frame,the resulted sequence will be still a(p,Y)-operator frame.We obtain a necessary and sufficient condition for a sequence of compound operators to be a(p,Y)operator frame.Lastly,we show that(p,Y)-operator frames for X are stable under some small perturbations.
基金Supported by Natural Science Foundation of Fujian Province, China (Grant No. 2009J01007)Education Commission Foundation of Fujian Province, China (Grant No. JA08013)
文摘In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or an Xd-frame for a Banach space X under perturbation. These results generalize and improve the related works of Balan, Casazza, Christensen, Stoeva and Jian et al.
基金Supported by the National Natural Science Foundation of China (Grant No.10571089)
文摘Grochenig and Balan, Casazza, Heil, and Landau introduced the concepts of localization. The concepts were used to Gabor frames, wavelet frames and sampling theorem in recent years. Here they are applied to the frame of exponential windows with the conclusion that the frame of exponential windows is a Banach frame for a kind of Banach spaces, and the conclusion is also obtained about the relationship between frame bounds, frame density, measure and density of indexing set.