AIM: To investigate the antifibrotic effects of bone morphogenetic protein-7 (BMP-7) on Schistosoma japonicum (S. japonicum )-induced hepatic fibrosis in BALB/C mice. METHODS: Sixty BALB/C mice were randomly divided i...AIM: To investigate the antifibrotic effects of bone morphogenetic protein-7 (BMP-7) on Schistosoma japonicum (S. japonicum )-induced hepatic fibrosis in BALB/C mice. METHODS: Sixty BALB/C mice were randomly divided into three groups, including a control group (group A, n = 20), model group (group B, n = 20) and BMP-7 treated group (group C, n = 20). The mice in group B and group C were abdominally infected with S. japonicum cercariae to induce a schistosomal hepatic fibrosis model. The mice in group C were administered human recombinant BMP-7. Liver samples were extracted from mice sacrificed at 9 and 15 wk after modeling. Hepatic histopathological changes were assessed using Masson's staining. Transforming growth factor-beta 1 (TGF-β1), alpha-smooth muscle actin (α-SMA), phosphorylated Smad2/3 (pSmad2/3) and Smad7 protein levels and localization were measured by Western blotting and immunohistochemistry, respectively, and their mRNA expressions were detected by reverse transcriptionpolymerase chain reaction (RT-PCR). RESULTS: The schistosomal hepatic fibrosis mouse model was successfully established, as the livers of mice in group B and group C showed varying degrees of typical schistosomal hepatopathologic changes such as egg granuloma and collagen deposition. The degree of collagen deposition in group C was higher than that in group A (week 9: 22.95±6.66vs 2.02±0.76; week 15: 12.84±4.36 vs 1.74±0.80; P<0.05), but significantly lower than that in group B (week 9: 22.95±6.66 vs 34.43±6.96; week 15: 12.84±4.36 vs 18.90±5.07;P<0.05) at both time points. According to immunohistochemistry data, the expressions of α-SMA, TGF-β1 and pSmad2/3 protein in group C were higher than those in group A (α-SMA: week 9: 21.24±5.73 vs 0.33±0.20; week 15: 12.42±4.88 vs 0.34±0.27; TGF-β1: week 9: 37.00±13.74 vs 3.73±2.14; week 15: 16.71±9.80 vs 3.08±2.35; pSmad2/3: week 9: 12.92±4.81 vs 0.83±0.48; week 15: 7.87±4.09 vs 0.90±0.45; P<0.05), but significantly lower than those in group B (α-SMA: week 9: 21.2展开更多
Dear Editor,As of June,2020,more than ten million cases of COVID-19 have been reported worldwide.The causative pathogen of the disease is a novel coronavirus named severe acute respiratory syndrome coronavirus 2(SARS-...Dear Editor,As of June,2020,more than ten million cases of COVID-19 have been reported worldwide.The causative pathogen of the disease is a novel coronavirus named severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)(World Health Organization,2020).Animal infection models are important to characterize the infection,pathogenesis,and immunology of SARS・CoV・2,as well as for the development of medications and vaccines against COVID-19.Mice are particularly attractive animal models for their identical genetic background,reliable reproducibility,well characterized biology,and the huge availability of research reagents and knockout animals.Models in inbreed mice such as BALB/c and C57BL/6J(C57),which are widely used in research,are highly desired.展开更多
文摘AIM: To investigate the antifibrotic effects of bone morphogenetic protein-7 (BMP-7) on Schistosoma japonicum (S. japonicum )-induced hepatic fibrosis in BALB/C mice. METHODS: Sixty BALB/C mice were randomly divided into three groups, including a control group (group A, n = 20), model group (group B, n = 20) and BMP-7 treated group (group C, n = 20). The mice in group B and group C were abdominally infected with S. japonicum cercariae to induce a schistosomal hepatic fibrosis model. The mice in group C were administered human recombinant BMP-7. Liver samples were extracted from mice sacrificed at 9 and 15 wk after modeling. Hepatic histopathological changes were assessed using Masson's staining. Transforming growth factor-beta 1 (TGF-β1), alpha-smooth muscle actin (α-SMA), phosphorylated Smad2/3 (pSmad2/3) and Smad7 protein levels and localization were measured by Western blotting and immunohistochemistry, respectively, and their mRNA expressions were detected by reverse transcriptionpolymerase chain reaction (RT-PCR). RESULTS: The schistosomal hepatic fibrosis mouse model was successfully established, as the livers of mice in group B and group C showed varying degrees of typical schistosomal hepatopathologic changes such as egg granuloma and collagen deposition. The degree of collagen deposition in group C was higher than that in group A (week 9: 22.95±6.66vs 2.02±0.76; week 15: 12.84±4.36 vs 1.74±0.80; P<0.05), but significantly lower than that in group B (week 9: 22.95±6.66 vs 34.43±6.96; week 15: 12.84±4.36 vs 18.90±5.07;P<0.05) at both time points. According to immunohistochemistry data, the expressions of α-SMA, TGF-β1 and pSmad2/3 protein in group C were higher than those in group A (α-SMA: week 9: 21.24±5.73 vs 0.33±0.20; week 15: 12.42±4.88 vs 0.34±0.27; TGF-β1: week 9: 37.00±13.74 vs 3.73±2.14; week 15: 16.71±9.80 vs 3.08±2.35; pSmad2/3: week 9: 12.92±4.81 vs 0.83±0.48; week 15: 7.87±4.09 vs 0.90±0.45; P<0.05), but significantly lower than those in group B (α-SMA: week 9: 21.2
文摘Dear Editor,As of June,2020,more than ten million cases of COVID-19 have been reported worldwide.The causative pathogen of the disease is a novel coronavirus named severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)(World Health Organization,2020).Animal infection models are important to characterize the infection,pathogenesis,and immunology of SARS・CoV・2,as well as for the development of medications and vaccines against COVID-19.Mice are particularly attractive animal models for their identical genetic background,reliable reproducibility,well characterized biology,and the huge availability of research reagents and knockout animals.Models in inbreed mice such as BALB/c and C57BL/6J(C57),which are widely used in research,are highly desired.