AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects o...AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.展开更多
Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent hig...Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent high temperature resistance. Though these alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Weld thermal cycle of the processes will control the weld metal solidification and subsequent phase transformation and resultant microstructure. The welded joints of Ti-6Al-4V alloy were fabricated by gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) processes. The joints fabricated by EBW process exhibit higher strength compared with the GTAW and LBW joints; but the joints by GTAW process exhibit higher impact toughness compared with the LBW and EBW joints. The resultant tensile and impact properties of the welded joints were correlated with the weld metal microstructures.展开更多
Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were inv...Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established.展开更多
Objective Radiotherapy combined with conservative surgery plays an important role in the treatment of early-stage breast cancer. Volumetric modulated arc therapy(VMAT) has been introduced into clinical practice. The p...Objective Radiotherapy combined with conservative surgery plays an important role in the treatment of early-stage breast cancer. Volumetric modulated arc therapy(VMAT) has been introduced into clinical practice. The purpose of this study was to investigate the dosimetric effects of different multileaf collimators(MLC) on VMAT radiotherapy plans for treating breast cancer.Methods Fifteen breast cancer patients who were treated using a conventional technique in our department were selected to participate in this retrospective analysis. VMAT plans based on three types of Elekta MLCs [Beam Modulator(BM) with 4-mm leaf width, Agility with 5-mm leaf width and MLCi2 with 10-mm leaf width] were independently generated for each patient. Plan comparisons were performed based on dose-volume histogram(DVH) analysis including dosimetric parameters such as the homogeneity index(HI), conformity index(CI), Dmax, Dmin, and Dmean for the planning treatment volume(PTV), in addition to dose-volume parameters for the organs at risk(OARs). The delivery efficiency of the three types of MLCs was compared in terms of the beam delivery time and the monitor units(MUs) per fraction for each plan. Results Both target uniformity and conformity were improved in plans for Agility and BM MLC compared with the plan using MLCi2. The mean HI decreased from 1.14 for MLCi2 to 1.13 for BM and 1.10 for Agility, while the mean CI increased from 0.68 for MLCi2 to 0.73 for BM and 0.75 for Agility. Furthermore, at both low and high dose levels, smaller volumes of ipsilateral lung, heart, contralateral lung, and breast were irradiated with Agility MLC than with the other two types of MLCs. The delivery time with Agility MLC was reduced by 10.8% and 32.1%, respectively, compared with that for MLCi2 and BM.Conclusion Our results indicate that the Agility MLC exhibits a dosimetric advantage and a significant improvement in delivery efficiency for the treatment of breast cancer using VMAT.展开更多
The arc regulation method is applied to the high-current ion source for high-power hydrogen ion beam extraction for the first time. The characteristics of the arc and beam, including the probe ion saturation current, ...The arc regulation method is applied to the high-current ion source for high-power hydrogen ion beam extraction for the first time. The characteristics of the arc and beam, including the probe ion saturation current, the arc power and the beam current, are studied with feedback control. The results show that the arc regulation method can be successfully applied to ion beam extraction. This lays a sound foundation for the testing of a new ion source and the operation of a conditioned ion source for neutral beam injector devices.展开更多
Blasting erosion arc machining(BEAM)is a typical arc discharge machining technology that was developed around 2012 to improve the machinability of difficult-to-cut materials.End milling BEAM has been successfully deve...Blasting erosion arc machining(BEAM)is a typical arc discharge machining technology that was developed around 2012 to improve the machinability of difficult-to-cut materials.End milling BEAM has been successfully developed and preliminarily applied in industry.However,owing to the high complexity of the flow field and the difficulty of observing debris in the discharge gap,studies of the flow and debris in end milling BEAM are limited.In this study,fluid dynamics simulations and particle tracking are used to investigate the flow characteristics and debris ejection processes in end milling BEAM.Firstly,the end milling BEAM m o d e is introduced.Then the numerical modeling parameters,geometric models,and simulation methods are presented in detail.Next,the flow distribution and debris ejection are described,analyzed,and discussed.The velocity and pressure distributions of the axial feed and radial feed are observed;the rotation speed and milling depth are found to have almost no effect on the flow velocity magnitude.Further,debris is ejected more rapidly in the radial feed than in the axial feed.The particle kinetic energy tends to increase with increasing milling depth,and smaller particles are more easily expelled from the flushing gap.This study attempts to reveal the flow field properties and debris ejection mechanism of end milling BEAM,which will be helpful in gaining a better understanding of BEAM.展开更多
基金Project DRAO/08/1061356/M1 supported by Aeronautical Research & Development Board (ARDB),New Delhi,India
文摘AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.
基金the Combat Vehicle Research and Development Establishment(CVRDE),Avadi,Chennai,Government of India for providing financial support to carry out this investigation through a Contract Acquisition for Research Services project,No.CVRDE/MMG/09-10/0043/CARS
文摘Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent high temperature resistance. Though these alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Weld thermal cycle of the processes will control the weld metal solidification and subsequent phase transformation and resultant microstructure. The welded joints of Ti-6Al-4V alloy were fabricated by gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) processes. The joints fabricated by EBW process exhibit higher strength compared with the GTAW and LBW joints; but the joints by GTAW process exhibit higher impact toughness compared with the LBW and EBW joints. The resultant tensile and impact properties of the welded joints were correlated with the weld metal microstructures.
基金financially supported by the National Natural Science Foundation of China(grant nos.51905391,52025052 and 51975405).
文摘Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established.
文摘Objective Radiotherapy combined with conservative surgery plays an important role in the treatment of early-stage breast cancer. Volumetric modulated arc therapy(VMAT) has been introduced into clinical practice. The purpose of this study was to investigate the dosimetric effects of different multileaf collimators(MLC) on VMAT radiotherapy plans for treating breast cancer.Methods Fifteen breast cancer patients who were treated using a conventional technique in our department were selected to participate in this retrospective analysis. VMAT plans based on three types of Elekta MLCs [Beam Modulator(BM) with 4-mm leaf width, Agility with 5-mm leaf width and MLCi2 with 10-mm leaf width] were independently generated for each patient. Plan comparisons were performed based on dose-volume histogram(DVH) analysis including dosimetric parameters such as the homogeneity index(HI), conformity index(CI), Dmax, Dmin, and Dmean for the planning treatment volume(PTV), in addition to dose-volume parameters for the organs at risk(OARs). The delivery efficiency of the three types of MLCs was compared in terms of the beam delivery time and the monitor units(MUs) per fraction for each plan. Results Both target uniformity and conformity were improved in plans for Agility and BM MLC compared with the plan using MLCi2. The mean HI decreased from 1.14 for MLCi2 to 1.13 for BM and 1.10 for Agility, while the mean CI increased from 0.68 for MLCi2 to 0.73 for BM and 0.75 for Agility. Furthermore, at both low and high dose levels, smaller volumes of ipsilateral lung, heart, contralateral lung, and breast were irradiated with Agility MLC than with the other two types of MLCs. The delivery time with Agility MLC was reduced by 10.8% and 32.1%, respectively, compared with that for MLCi2 and BM.Conclusion Our results indicate that the Agility MLC exhibits a dosimetric advantage and a significant improvement in delivery efficiency for the treatment of breast cancer using VMAT.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101000)partly supported by National Natural Science Foundation of China(No.11075183)the Knowledge Innovation Program of the Chinese Academy of Sciences(Study of the physical characteristics of arc power feedback control for the high current ion source)
文摘The arc regulation method is applied to the high-current ion source for high-power hydrogen ion beam extraction for the first time. The characteristics of the arc and beam, including the probe ion saturation current, the arc power and the beam current, are studied with feedback control. The results show that the arc regulation method can be successfully applied to ion beam extraction. This lays a sound foundation for the testing of a new ion source and the operation of a conditioned ion source for neutral beam injector devices.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51975371,51575351)Innovation and Entrepreneurship Project for High-Level Talents in Jiangsu Province(2019-20)Jiangsu Agriculture Science and Technology Innovation Fund(JASTIF)(Grant No.CX(20)3067).
文摘Blasting erosion arc machining(BEAM)is a typical arc discharge machining technology that was developed around 2012 to improve the machinability of difficult-to-cut materials.End milling BEAM has been successfully developed and preliminarily applied in industry.However,owing to the high complexity of the flow field and the difficulty of observing debris in the discharge gap,studies of the flow and debris in end milling BEAM are limited.In this study,fluid dynamics simulations and particle tracking are used to investigate the flow characteristics and debris ejection processes in end milling BEAM.Firstly,the end milling BEAM m o d e is introduced.Then the numerical modeling parameters,geometric models,and simulation methods are presented in detail.Next,the flow distribution and debris ejection are described,analyzed,and discussed.The velocity and pressure distributions of the axial feed and radial feed are observed;the rotation speed and milling depth are found to have almost no effect on the flow velocity magnitude.Further,debris is ejected more rapidly in the radial feed than in the axial feed.The particle kinetic energy tends to increase with increasing milling depth,and smaller particles are more easily expelled from the flushing gap.This study attempts to reveal the flow field properties and debris ejection mechanism of end milling BEAM,which will be helpful in gaining a better understanding of BEAM.