There have been various studies on approximation ability of feedforward neural networks (FNNs). Most of the existing studies are, however, only concerned with density or upper bound estimation on how a multivariate fu...There have been various studies on approximation ability of feedforward neural networks (FNNs). Most of the existing studies are, however, only concerned with density or upper bound estimation on how a multivariate function can be approximated by an FNN, and consequently, the essential approximation ability of an FNN cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approximation ability (namely, the essential approximation order) of a class of FNNs is clarified in terms of the modulus of smoothness of functions to be approximated. The involved FNNs can not only approximate any continuous or integrable functions defined on a compact set arbitrarily well, but also provide an explicit lower bound on the number of hidden units required. By making use of multivariate approximation tools, it is shown that when the functions to be approximated are Lipschitzian with order up to 2, the approximation speed of the FNNs is uniquely determined by modulus of smoothness of the functions.展开更多
Let D be a smooth domain in the complex plane. In D consider the simultaneous ap- proximation to a function and its ith (0≤i≤q) derivatives by Hermite interpolation. The orders of uniform approximation and approxima...Let D be a smooth domain in the complex plane. In D consider the simultaneous ap- proximation to a function and its ith (0≤i≤q) derivatives by Hermite interpolation. The orders of uniform approximation and approximation in the mean, are obtained under some domain boundary conditions. Some known results are included as particular cases of the theorems of this paper.展开更多
An algorithm is presented for raising an approximation order of any given orthogonal multiscaling function with the dilation factor a. Let φ(x) = [φ1(x),φ2(x),…,φr(x)]T be an orthogonal multiscaling function with...An algorithm is presented for raising an approximation order of any given orthogonal multiscaling function with the dilation factor a. Let φ(x) = [φ1(x),φ2(x),…,φr(x)]T be an orthogonal multiscaling function with the dilation factor a and the approximation order m. We can construct a new orthogonal multiscaling function φnew(x) = [ φT(x). f3r+1(x),φr+2(x),…,φr+s(x)}T with the approximation order m + L(L ∈ Z+). In other words, we raise the approximation order of multiscaling function φ(x) by increasing its multiplicity. In addition, we discuss an especial setting. That is, if given an orthogonal multiscaling function φ(x) = [φ1 (x), φ2(x), …, φr(x)]T is symmetric, then the new orthogonal multiscaling function φnew(x) not only raise the approximation order but also preserve symmetry. Finally, some examples are given.展开更多
The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogon...The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogonal multiscaling functions. What is more, by applying PTST, we present an algorithm of constructing high order balanced multiscaling functions by balancing the already existing orthogonal nonbalanced multiscaling functions. The corresponding transform matrix is given explicitly. In addition, we also investigate the symmetry of the balanced multiscaling functions. Finally, construction examples are given.展开更多
In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] ...In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.展开更多
文摘There have been various studies on approximation ability of feedforward neural networks (FNNs). Most of the existing studies are, however, only concerned with density or upper bound estimation on how a multivariate function can be approximated by an FNN, and consequently, the essential approximation ability of an FNN cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approximation ability (namely, the essential approximation order) of a class of FNNs is clarified in terms of the modulus of smoothness of functions to be approximated. The involved FNNs can not only approximate any continuous or integrable functions defined on a compact set arbitrarily well, but also provide an explicit lower bound on the number of hidden units required. By making use of multivariate approximation tools, it is shown that when the functions to be approximated are Lipschitzian with order up to 2, the approximation speed of the FNNs is uniquely determined by modulus of smoothness of the functions.
文摘Let D be a smooth domain in the complex plane. In D consider the simultaneous ap- proximation to a function and its ith (0≤i≤q) derivatives by Hermite interpolation. The orders of uniform approximation and approximation in the mean, are obtained under some domain boundary conditions. Some known results are included as particular cases of the theorems of this paper.
基金supported by the National Natural Science Foundation of China(Grant No.90104004&10471002)973 project of China(Grant No.G1999075105)+1 种基金the Natural Science Foundation of Guangdong Province(Grant No.05008289&032038)the Doctoral Foundation of Guangdong Province(Grant No.04300917).
文摘An algorithm is presented for raising an approximation order of any given orthogonal multiscaling function with the dilation factor a. Let φ(x) = [φ1(x),φ2(x),…,φr(x)]T be an orthogonal multiscaling function with the dilation factor a and the approximation order m. We can construct a new orthogonal multiscaling function φnew(x) = [ φT(x). f3r+1(x),φr+2(x),…,φr+s(x)}T with the approximation order m + L(L ∈ Z+). In other words, we raise the approximation order of multiscaling function φ(x) by increasing its multiplicity. In addition, we discuss an especial setting. That is, if given an orthogonal multiscaling function φ(x) = [φ1 (x), φ2(x), …, φr(x)]T is symmetric, then the new orthogonal multiscaling function φnew(x) not only raise the approximation order but also preserve symmetry. Finally, some examples are given.
基金supported by the National Natural Science Foundation of China(Grant Nos.90104004 and 10471002)the 973 Project of China(Grant Nos.G1999075105)+1 种基金the Natural Science Foundation of Guangdong Province(Grant Nos.032038,05008289)the Doctoral Foundation of Guangdong Province(Grant No.04300917).
文摘The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogonal multiscaling functions. What is more, by applying PTST, we present an algorithm of constructing high order balanced multiscaling functions by balancing the already existing orthogonal nonbalanced multiscaling functions. The corresponding transform matrix is given explicitly. In addition, we also investigate the symmetry of the balanced multiscaling functions. Finally, construction examples are given.
文摘In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.