期刊文献+

Construction of high order balanced multiscaling functions via PTST 被引量:5

Construction of high order balanced multiscaling functions via PTST
原文传递
导出
摘要 The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogonal multiscaling functions. What is more, by applying PTST, we present an algorithm of constructing high order balanced multiscaling functions by balancing the already existing orthogonal nonbalanced multiscaling functions. The corresponding transform matrix is given explicitly. In addition, we also investigate the symmetry of the balanced multiscaling functions. Finally, construction examples are given. The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogonal multiscaling functions. What is more, by applying PTST, we present an algorithm of constructing high order balanced multiscaling functions by balancing the already existing orthogonal nonbalanced multiscaling functions. The corresponding transform matrix is given explicitly. In addition, we also investigate the symmetry of the balanced multiscaling functions. Finally, construction examples are given.
出处 《Science in China(Series F)》 2006年第4期504-515,共12页 中国科学(F辑英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.90104004 and 10471002) the 973 Project of China(Grant Nos.G1999075105) the Natural Science Foundation of Guangdong Province(Grant Nos.032038,05008289) the Doctoral Foundation of Guangdong Province(Grant No.04300917).
关键词 PTST balanced order approximation order muitiscaling functions. PTST, balanced order, approximation order, muitiscaling functions.
  • 相关文献

参考文献3

二级参考文献32

  • 1[1]Unser, M., Sampling-50 years after Shannon, Proceedings of IEEE, April 2000, 88(4): 569-587. 被引量:1
  • 2[2]Walter, G. G., A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory, March 1992, 38(2):881-884. 被引量:1
  • 3[3]Janssen, A. J. E. M., The Zak transform and sampling theorem for wavelet subspaces, IEEE Trans. Signal Processing, December 1993, 41: 3360-3365. 被引量:1
  • 4[4]Chen, W., Itoh, S., A sampling theorem for shift-invariant subspace, IEEE Trans. Signal Processing, 1998, 46(10): 2822-2924. 被引量:1
  • 5[5]Xia. X. G., On sampling theorem, wavelet, and wavelet transforms, IEEE Trans. Signal Processing, De cember 1993, 41(12): 3524-3535. 被引量:1
  • 6[6]Geronimo, J. S., Hardin, D. P., Massopust, P. R., Fractal function and wavelet expansions based on several scaling functions, Jour. Appr. Theory, September 1994, 78(3): 373-401. 被引量:1
  • 7[7]Chui, C. K., Lian, J., A study of orthonormal multi-wavelets, Applied Numer. Math, March 1996, 20(3): 273-298. 被引量:1
  • 8[8]Plonka, G., Strela, V., Construction of multiscaling function with approximation and symmetry, SIAM J.Math. Anal, March 1998, 29(2): 481-510. 被引量:1
  • 9[9]Selesnick, I. W., Interpolating multiwavelet bases and the sampling theorem, IEEE Trans. Signal Processing, June 1999, 47(6): 1615-1621. 被引量:1
  • 10[10]Blu, T., Unser, M., Approximation error for quasi-interpolators and (multi) wavelet expansions, Applied and Computation Harmonic Analysis, 1999, 6: 219-251. 被引量:1

共引文献19

同被引文献3

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部