【目的】为了明确苹果轮纹病的病原葡萄座腔菌(Botryosphaeria dothidea(Moug.)Ces.et De Not.)的有性生殖阶段在我国是否发生及在我国苹果主产区的发生情况,【方法】2011年10月至2012年11月,对我国山东等8个苹果主产省市的38个果园进...【目的】为了明确苹果轮纹病的病原葡萄座腔菌(Botryosphaeria dothidea(Moug.)Ces.et De Not.)的有性生殖阶段在我国是否发生及在我国苹果主产区的发生情况,【方法】2011年10月至2012年11月,对我国山东等8个苹果主产省市的38个果园进行了调查与采样,对田间发现的子囊孢子通过形态观察、ITS序列的比对进行种类鉴定,并对子囊孢子进行了致病性测定。【结果】在北京、山东、河南、河北、陕西、山西和辽宁7个省市的20个果园的干腐型枯枝上发现了葡萄座腔菌的有性阶段,占调查省份的87.5%,占调查果园的52.6%;致病性测定结果显示,枯枝上形成的葡萄座腔菌的子囊孢子不仅可侵染苹果果实引起果腐,而且可侵染苹果枝条引起枝干溃疡。【结论】葡萄座腔菌的有性生殖在我国苹果主产区果园中发生普遍,子囊孢子不仅是葡萄座腔菌的一种越冬方式,也可以成为引起苹果轮纹病发生的初侵染源,在今后的轮纹病防治中,加强对苹果轮纹病田间干腐型枯枝的处理,将有助于提高病害防治效果。展开更多
【目的】分析苹果轮纹病菌(Botryosphaeria berengeriana)的遗传多样性并确认其优势类群。【方法】对采集分离的64个菌株进行形态特征和致病性测定,对部分菌株的进行了ITS序列测序,采用ISSR分析这些菌株的遗传多样性。【结果】通过形态...【目的】分析苹果轮纹病菌(Botryosphaeria berengeriana)的遗传多样性并确认其优势类群。【方法】对采集分离的64个菌株进行形态特征和致病性测定,对部分菌株的进行了ITS序列测序,采用ISSR分析这些菌株的遗传多样性。【结果】通过形态特征和致病性明确了所分离的64个菌株是苹果轮纹病菌。17个菌株ITS序列与贝格伦葡萄座腔菌(Botryosphaeria berengeriana de Not f.sp.piricola(Nose)Koganezawa et Sakuma)的序列一致,并且被分成两个类型H1和H2。用13条ISSR引物从64个菌株中扩增出121条条带,其中88条多态性条带,多态性比率为72%。64个菌株的遗传相似性从0.44到0.99,并且被分成2个ISSR类群,类群1包含21个菌株、类群2包含43个菌株。【结论】本研究中贝格伦葡萄座腔菌的遗传多样性与菌株的地域、症状以及分离部位没有相关性。苹果轮纹病菌被分成2个ISSR类群,类群2是优势类群。展开更多
Apple ring rot,which is caused by Botryosphaeria dothidea,severely affects apple production.The mechanisms employed in apple cells against B.dothidea remain unknown.In this research,the pathogen infection mode and the...Apple ring rot,which is caused by Botryosphaeria dothidea,severely affects apple production.The mechanisms employed in apple cells against B.dothidea remain unknown.In this research,the pathogen infection mode and the relationship between cell death and disease resistance in‘Fuji’/B.dothidea interaction pathosystem were investigated.By using transmission electron microscopy(TEM),our research showed that the pathogen infects apple cells both intracellularly and extracellularly.However,compared with that in immature fruit,the incidence of hyphae in the interior of mature apple fruit cells increased dramatically,suggesting that cell wall-mediated penetration resistance could be important in apple resistance against B.dothidea.TEM ultrastructural characterization identified the nuclear morphology of programmed cell death induction in both apple fruit and callus cells under B.dothidea infection.Overexpression of MdVDAC2(MDP0000271281),which encodes an outer-membrane localized anion channel protein in mitochondria,significantly promoted cell death under B.dothidea infection and simultaneously inhibited pathogen infection,suggesting that cell death represents a disease resistance mechanism in apple against B.dothidea infection.Furthermore,BdCatalase(KAF4307763),a cytochromeP450 family protein BdCYP52A4(KAF4300696),and subtilisin-domain containing proteinswere identified fromB.dothidea-secreted proteins,which suggested the potential involvement of active oxygen species and phytoalexins in combating B.dothidea infection and triggering or dampening apple resistance.Collectively,our research suggested that cell wall-mediated penetration resistance,programmed cell death machinery and microbial effector-interrelated signaling were among strategies recruited in apple to combat B.dothidea.The current research laid the foundation for further investigations into resistance mechanisms in apple.展开更多
文摘【目的】为了明确苹果轮纹病的病原葡萄座腔菌(Botryosphaeria dothidea(Moug.)Ces.et De Not.)的有性生殖阶段在我国是否发生及在我国苹果主产区的发生情况,【方法】2011年10月至2012年11月,对我国山东等8个苹果主产省市的38个果园进行了调查与采样,对田间发现的子囊孢子通过形态观察、ITS序列的比对进行种类鉴定,并对子囊孢子进行了致病性测定。【结果】在北京、山东、河南、河北、陕西、山西和辽宁7个省市的20个果园的干腐型枯枝上发现了葡萄座腔菌的有性阶段,占调查省份的87.5%,占调查果园的52.6%;致病性测定结果显示,枯枝上形成的葡萄座腔菌的子囊孢子不仅可侵染苹果果实引起果腐,而且可侵染苹果枝条引起枝干溃疡。【结论】葡萄座腔菌的有性生殖在我国苹果主产区果园中发生普遍,子囊孢子不仅是葡萄座腔菌的一种越冬方式,也可以成为引起苹果轮纹病发生的初侵染源,在今后的轮纹病防治中,加强对苹果轮纹病田间干腐型枯枝的处理,将有助于提高病害防治效果。
文摘【目的】分析苹果轮纹病菌(Botryosphaeria berengeriana)的遗传多样性并确认其优势类群。【方法】对采集分离的64个菌株进行形态特征和致病性测定,对部分菌株的进行了ITS序列测序,采用ISSR分析这些菌株的遗传多样性。【结果】通过形态特征和致病性明确了所分离的64个菌株是苹果轮纹病菌。17个菌株ITS序列与贝格伦葡萄座腔菌(Botryosphaeria berengeriana de Not f.sp.piricola(Nose)Koganezawa et Sakuma)的序列一致,并且被分成两个类型H1和H2。用13条ISSR引物从64个菌株中扩增出121条条带,其中88条多态性条带,多态性比率为72%。64个菌株的遗传相似性从0.44到0.99,并且被分成2个ISSR类群,类群1包含21个菌株、类群2包含43个菌株。【结论】本研究中贝格伦葡萄座腔菌的遗传多样性与菌株的地域、症状以及分离部位没有相关性。苹果轮纹病菌被分成2个ISSR类群,类群2是优势类群。
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000307)the Natural Science Foundation in China(Grant Nos.31672136 and 31272132).
文摘Apple ring rot,which is caused by Botryosphaeria dothidea,severely affects apple production.The mechanisms employed in apple cells against B.dothidea remain unknown.In this research,the pathogen infection mode and the relationship between cell death and disease resistance in‘Fuji’/B.dothidea interaction pathosystem were investigated.By using transmission electron microscopy(TEM),our research showed that the pathogen infects apple cells both intracellularly and extracellularly.However,compared with that in immature fruit,the incidence of hyphae in the interior of mature apple fruit cells increased dramatically,suggesting that cell wall-mediated penetration resistance could be important in apple resistance against B.dothidea.TEM ultrastructural characterization identified the nuclear morphology of programmed cell death induction in both apple fruit and callus cells under B.dothidea infection.Overexpression of MdVDAC2(MDP0000271281),which encodes an outer-membrane localized anion channel protein in mitochondria,significantly promoted cell death under B.dothidea infection and simultaneously inhibited pathogen infection,suggesting that cell death represents a disease resistance mechanism in apple against B.dothidea infection.Furthermore,BdCatalase(KAF4307763),a cytochromeP450 family protein BdCYP52A4(KAF4300696),and subtilisin-domain containing proteinswere identified fromB.dothidea-secreted proteins,which suggested the potential involvement of active oxygen species and phytoalexins in combating B.dothidea infection and triggering or dampening apple resistance.Collectively,our research suggested that cell wall-mediated penetration resistance,programmed cell death machinery and microbial effector-interrelated signaling were among strategies recruited in apple to combat B.dothidea.The current research laid the foundation for further investigations into resistance mechanisms in apple.