Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and sele...Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.展开更多
Animal gastrointestinal tract is not only a digestive organ, but also a nutrient sensing organ which detects luminal nutrient and thus can regulate food intake. There are many amino acid sensing receptors and transpor...Animal gastrointestinal tract is not only a digestive organ, but also a nutrient sensing organ which detects luminal nutrient and thus can regulate food intake. There are many amino acid sensing receptors and transporters in the gut. Amino acids sensing by these receptors and transporters can stimulate the intestinal endocrine cells to release a variety of gut hormones. These hormones trigger a series of physiological effects via the nerve system. This review summarized the recent advance on the amino acid sensing receptors and transporters in the gastrointestinal tract, the gut hormones released from the intestinal endocrine cells and the hormones-induced signal transduction between the gut and brain. A better understanding of these processes may help to gain further insight into the specific role of amino acids in digestion and provide guidelines in developing strategy for the better use of amino acids in the diet.展开更多
This study was designed to compare the effect of methionine(Met)sources(DL-methionine[DLM]and DL-2-hydroxy-4-methylthio-butanoic acid(HMTBa))and their supplementation levels on broiler growth performance and redox sta...This study was designed to compare the effect of methionine(Met)sources(DL-methionine[DLM]and DL-2-hydroxy-4-methylthio-butanoic acid(HMTBa))and their supplementation levels on broiler growth performance and redox state.A 2 x 2 factorial arrangement was used with 2 sources(DLM and HMTBa)and 2 supplementation levels(0.05% and 0.252%)of Met.A total of 480 one-day-old broiler chicks were randomly divided into 4 treatments with 8 replicates per treatment(15 birds per replicate).The experiment lasted for 21 d.Broiler growth performance,redox capacity,redox-related genes expression,and Met transporters in different tissues were tested.Broilers fed high Met supplementation levels had improved(P<0.05)body weight(BW).average daily gain(ADG)and feed conversion ratio(FCR).Similarly,broilers fed high Met levels had better(P<0.05)antioxidant abilities in the serum,small intestine,and liver.Whereas,interactive effects(P<0.05)were also observed between Met sources and levels.Compared with DLM.birds fed HMTBa diets had decreased(P<0.05)total glutathione(T-GSH)and oxidized glutathione(GSSG)contents in duodenum,ileum,and liver.Similarly,broilers fed HMTBa supplemented diets had increased(P<0.05)thioredoxin(Trx)gene expression in the duodenum and ileum,but decreased(P<0.05)glutaredoxin(Grx).glutathione reductase(CSR).and glutathione synthetase(GSS)genes expression.Furthermore,lower gene expression of Na+ and Cl-dependent neutral and cationic amino acid transporter(ATB0,+).and Na+ dependent neutral amino acid transporter(B0 AT)in the duodenum brush border,but higher gene expression of diamine acetyltransferase 1(SAT1)and Na+-independent branched-chain and aromatic amino acid transporter(LAT1)in the jejunum and ileum basement membrane along with higher expression of the proton dependent monocarboxylate transporter 1(MCT1)gene in the ileum were detected in birds fed HMTBa diets.In conclusion.DLM can be effectively used in glutathione synthesis to exert antioxidant functions,whereas HMTBa favors S-adenosylmethionine(SAM)synthesis and t展开更多
基金Research in M.T.'s laboratory was supported by the US National Science Foundation (IOS 0135344 and IOS 0448506) and by the Agricultural and Food Research Initiative Competitive Grant no. 2010-65115-20382 from the USDA National Institute of Food and Agriculture. Work in D.R.'s laboratory was supported by grants from the Swiss National Science Foundation 3100A0-107507 and 31003A 127340, and EU Marie Curie Research Training Network 'VaTEP - Vacuolar Transport Equipment for Growth Regulation of Plants' (M RTN-CT-2006-035833). No conflict of interest declared.
文摘Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.
基金supported by the National Key Basic Research Program of China (2013CB127300)Natural Science Foundation of China (31430082)+1 种基金Jiangsu Province Natural Science Foundation (BK20130058)the Collaborative Innovation Center of Meat Production and Processing
文摘Animal gastrointestinal tract is not only a digestive organ, but also a nutrient sensing organ which detects luminal nutrient and thus can regulate food intake. There are many amino acid sensing receptors and transporters in the gut. Amino acids sensing by these receptors and transporters can stimulate the intestinal endocrine cells to release a variety of gut hormones. These hormones trigger a series of physiological effects via the nerve system. This review summarized the recent advance on the amino acid sensing receptors and transporters in the gastrointestinal tract, the gut hormones released from the intestinal endocrine cells and the hormones-induced signal transduction between the gut and brain. A better understanding of these processes may help to gain further insight into the specific role of amino acids in digestion and provide guidelines in developing strategy for the better use of amino acids in the diet.
基金supported by Beijing Technology Program[Z181100009318008]Beijing Agricultural Innovation Consortium(BAlC04-2018)
文摘This study was designed to compare the effect of methionine(Met)sources(DL-methionine[DLM]and DL-2-hydroxy-4-methylthio-butanoic acid(HMTBa))and their supplementation levels on broiler growth performance and redox state.A 2 x 2 factorial arrangement was used with 2 sources(DLM and HMTBa)and 2 supplementation levels(0.05% and 0.252%)of Met.A total of 480 one-day-old broiler chicks were randomly divided into 4 treatments with 8 replicates per treatment(15 birds per replicate).The experiment lasted for 21 d.Broiler growth performance,redox capacity,redox-related genes expression,and Met transporters in different tissues were tested.Broilers fed high Met supplementation levels had improved(P<0.05)body weight(BW).average daily gain(ADG)and feed conversion ratio(FCR).Similarly,broilers fed high Met levels had better(P<0.05)antioxidant abilities in the serum,small intestine,and liver.Whereas,interactive effects(P<0.05)were also observed between Met sources and levels.Compared with DLM.birds fed HMTBa diets had decreased(P<0.05)total glutathione(T-GSH)and oxidized glutathione(GSSG)contents in duodenum,ileum,and liver.Similarly,broilers fed HMTBa supplemented diets had increased(P<0.05)thioredoxin(Trx)gene expression in the duodenum and ileum,but decreased(P<0.05)glutaredoxin(Grx).glutathione reductase(CSR).and glutathione synthetase(GSS)genes expression.Furthermore,lower gene expression of Na+ and Cl-dependent neutral and cationic amino acid transporter(ATB0,+).and Na+ dependent neutral amino acid transporter(B0 AT)in the duodenum brush border,but higher gene expression of diamine acetyltransferase 1(SAT1)and Na+-independent branched-chain and aromatic amino acid transporter(LAT1)in the jejunum and ileum basement membrane along with higher expression of the proton dependent monocarboxylate transporter 1(MCT1)gene in the ileum were detected in birds fed HMTBa diets.In conclusion.DLM can be effectively used in glutathione synthesis to exert antioxidant functions,whereas HMTBa favors S-adenosylmethionine(SAM)synthesis and t