Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous s...Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.展开更多
Different studies show the need of immature adipose cell to induce the proliferation of bulge stem cells in order to kick off the anagen phase of hair cycle. Furthermore, the adipose derived stem cell, adipose progeni...Different studies show the need of immature adipose cell to induce the proliferation of bulge stem cells in order to kick off the anagen phase of hair cycle. Furthermore, the adipose derived stem cell, adipose progenitors, and growth factors secreted by mature adipocytes can help the wound healing and the vascular neogenesis. Nowadays, it is not known any protocol of tissue regeneration applied to hair transplantation, especially if aimed to the reconstruction of the main vascular network for the engraftment of transplanted hair and the healing process. The aim of the work is to investigate how the application of autologous cellular suspension obtained by Rigenera system, mechanical fragmentation procedure which allows to obtain a physiological saline solution consisting of a heterogeneous pool of cells rich in adipose derived mesenchymalstem cells and growth factors, helps the wound healing and engraftment of the transplanted hair. During hair restoration surgery, the adipose tissue recovered from the discard of follicular slicing, was processed using the Rigenera system. The obtained cell suspension was applied in the area of hair transplantation, increasing the natural background of adipocyte lineage and raising the amount of growth factors. In addition, the cellular suspension was applied to the suture on the occipital region. The cell population was characterized by FACS. The monthly evaluation of hair transplantation follow-up with photos and the patient’s impressions demonstrates that there is a faster healing of the micro-wound and a continuous growth of the transplanted hair even two months after the procedure, with a shortening of the dormant phase. In conclusion, this new approach aims to integrate regenerative medicine and hair restoration surgery in order to improve the outcome for the patient. It would be wonderful to continue this research to elaborate on the molecular cause behind this satisfying clinical.展开更多
This study was designed to investigate the effects of local delivery of adipose-derived stem cells (ADSCs) transfected with transcription factor osterix (OSX) on bone formation during distraction osteogenesis. New...This study was designed to investigate the effects of local delivery of adipose-derived stem cells (ADSCs) transfected with transcription factor osterix (OSX) on bone formation during distraction osteogenesis. New Zealand white rabbits (n=54) were randomly divided into three groups (18 rabbits per group). A directed cloning technique was used for the construction of recombinant plasmid pEGFP-OSX, where EGFP is the enhanced green fluorescence protein. After osteodistraction of the dght mandible of all experimental rabbits, rabbits in group A were treated with ADSCs transfected with pEGFP-OSX, group B with ADSCs transfected with pEGFP-N1, and group C with physiological saline. Radiographic and histological examinations were processed after half of the animals within each group were humanely killed by injection of sodium pentothal at Week 2 or 6 after surgery. The distraction bone density was measured as its projectional bone mineral density (BMD). Three parameters were measured, namely, the thickness of new trabeculae (TNT), and the volumes of the newly generated cortical bone (NBV1) and the cancellous bone (NBV2) of the distracted regions. Good bone generation in the distraction areas was found in group A, which had the highest BMD, TNT, and NBV in the distraction zones among the groups. There was no significant difference in bone generation in the distraction areas between groups B and C. The results indicate that the transplantation of ADSCs transfected with pEGFP-OSX can effectively promote bone generation during distraction in vivo.展开更多
基金This research was supported by the Beijing Natural Science Foundation (Grant No. 7174362) and the National Natural Science Foundation of China (Grant No. 81601272).
文摘Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.
文摘Different studies show the need of immature adipose cell to induce the proliferation of bulge stem cells in order to kick off the anagen phase of hair cycle. Furthermore, the adipose derived stem cell, adipose progenitors, and growth factors secreted by mature adipocytes can help the wound healing and the vascular neogenesis. Nowadays, it is not known any protocol of tissue regeneration applied to hair transplantation, especially if aimed to the reconstruction of the main vascular network for the engraftment of transplanted hair and the healing process. The aim of the work is to investigate how the application of autologous cellular suspension obtained by Rigenera system, mechanical fragmentation procedure which allows to obtain a physiological saline solution consisting of a heterogeneous pool of cells rich in adipose derived mesenchymalstem cells and growth factors, helps the wound healing and engraftment of the transplanted hair. During hair restoration surgery, the adipose tissue recovered from the discard of follicular slicing, was processed using the Rigenera system. The obtained cell suspension was applied in the area of hair transplantation, increasing the natural background of adipocyte lineage and raising the amount of growth factors. In addition, the cellular suspension was applied to the suture on the occipital region. The cell population was characterized by FACS. The monthly evaluation of hair transplantation follow-up with photos and the patient’s impressions demonstrates that there is a faster healing of the micro-wound and a continuous growth of the transplanted hair even two months after the procedure, with a shortening of the dormant phase. In conclusion, this new approach aims to integrate regenerative medicine and hair restoration surgery in order to improve the outcome for the patient. It would be wonderful to continue this research to elaborate on the molecular cause behind this satisfying clinical.
基金Project supported by the Seed Fund of the Second Hospital of Shandong University (No.S2013010024),China
文摘This study was designed to investigate the effects of local delivery of adipose-derived stem cells (ADSCs) transfected with transcription factor osterix (OSX) on bone formation during distraction osteogenesis. New Zealand white rabbits (n=54) were randomly divided into three groups (18 rabbits per group). A directed cloning technique was used for the construction of recombinant plasmid pEGFP-OSX, where EGFP is the enhanced green fluorescence protein. After osteodistraction of the dght mandible of all experimental rabbits, rabbits in group A were treated with ADSCs transfected with pEGFP-OSX, group B with ADSCs transfected with pEGFP-N1, and group C with physiological saline. Radiographic and histological examinations were processed after half of the animals within each group were humanely killed by injection of sodium pentothal at Week 2 or 6 after surgery. The distraction bone density was measured as its projectional bone mineral density (BMD). Three parameters were measured, namely, the thickness of new trabeculae (TNT), and the volumes of the newly generated cortical bone (NBV1) and the cancellous bone (NBV2) of the distracted regions. Good bone generation in the distraction areas was found in group A, which had the highest BMD, TNT, and NBV in the distraction zones among the groups. There was no significant difference in bone generation in the distraction areas between groups B and C. The results indicate that the transplantation of ADSCs transfected with pEGFP-OSX can effectively promote bone generation during distraction in vivo.