In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind f...In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.展开更多
HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the sys...HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.展开更多
基金This study was supported in part by the National Key R&D Program of China(2017YFB0902100).
文摘In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.
文摘HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.