摘要
HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.
HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.