We report a facile, two-step hydrothermal synthesis of a novel Co304/a-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and st...We report a facile, two-step hydrothermal synthesis of a novel Co304/a-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and stability. The single-crystalline, primary C0304 nanowire trunk arrays directly grown on Ti substrates allow for efficient electrical and ionic transport. The secondary a-Fe2O3 branches provide enhanced surface area and high theoretical Li+ storage capacity, and can also serve as volume spacers between neighboring Co3O4 NW arrays to maintain electrolyte penetration as well as reduce the aggregation during Li+ intercalation, thus leading to improved electrochemical energy storage performance.展开更多
文摘We report a facile, two-step hydrothermal synthesis of a novel Co304/a-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and stability. The single-crystalline, primary C0304 nanowire trunk arrays directly grown on Ti substrates allow for efficient electrical and ionic transport. The secondary a-Fe2O3 branches provide enhanced surface area and high theoretical Li+ storage capacity, and can also serve as volume spacers between neighboring Co3O4 NW arrays to maintain electrolyte penetration as well as reduce the aggregation during Li+ intercalation, thus leading to improved electrochemical energy storage performance.