In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
Hydrologic frequency analysis plays an important role in coastal and ocean engineering for structural design and disaster prevention in coastal areas. This paper proposes a Nonlinear Least Squares Method (NLSM), which...Hydrologic frequency analysis plays an important role in coastal and ocean engineering for structural design and disaster prevention in coastal areas. This paper proposes a Nonlinear Least Squares Method (NLSM), which estimates the three unknown parameters of the Weibull distribution simultaneously by an iteration method. Statistical test shows that the NLSM fits each data sample well. The effects of different parameter-fitting methods, distribution models, and threshold values are also discussed in the statistical analysis of storm set-down elevation. The best-fitting probability distribution is given and the corresponding return values are estimated for engineering design.展开更多
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金supported by the 10th Five-Year Plan Key Project of China and the National Science Foundation of China(grant No.40076028).
文摘Hydrologic frequency analysis plays an important role in coastal and ocean engineering for structural design and disaster prevention in coastal areas. This paper proposes a Nonlinear Least Squares Method (NLSM), which estimates the three unknown parameters of the Weibull distribution simultaneously by an iteration method. Statistical test shows that the NLSM fits each data sample well. The effects of different parameter-fitting methods, distribution models, and threshold values are also discussed in the statistical analysis of storm set-down elevation. The best-fitting probability distribution is given and the corresponding return values are estimated for engineering design.