The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyan...The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.展开更多
Commercialization of acetylene hydrochlorination using AuCl3 catalysts has been impeded by its poor stability. We have been studying that nitrogen-modified Au/NAC catalyst delivered a stable performance which can impr...Commercialization of acetylene hydrochlorination using AuCl3 catalysts has been impeded by its poor stability. We have been studying that nitrogen-modified Au/NAC catalyst delivered a stable performance which can improve acetylene hydrochlorination activity and has resistance to catalytic deactivation. Here we show that nitrogen and sulfur co-doped activated carbon supported AuCl3 catalyst worked as efficient catalysts for the hydrochlorination of acetylene to vinyl chloride. Au/NSAC catalyst demonstrated high activity comparative to Au/AC catalyst. Furthermore, it also delivered stable performance within the selectivity of acetylene, reaching more than 99.5%, and there was only a 3.3% C2H2 conversion loss after running for 12 h under the reaction conditions of a temperature of 180 C and a C2H2 hourly space velocity of 1480 h 1. The presence of the sulfur atoms may serve to immobilize/ anchor the Au and also help prevent reduction and sintering of the Au and hence improve the catalytic activity and stability. The excellent catalytic performance of the Au/NSAC catalyst demonstrated its potential as an alternative to mercury chloride catalysts for acetylene hydrochlorination.展开更多
基金Supported by the Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(No.2016ZX05060)the Demonstration of Integrated Management of Rocky Desertification and Enhancement of Ecological Service Function in Karst Peak-cluster Depression(No.2016YFC0502400)National Natural Science Foundation of China(No.51709254)
文摘The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.
文摘Commercialization of acetylene hydrochlorination using AuCl3 catalysts has been impeded by its poor stability. We have been studying that nitrogen-modified Au/NAC catalyst delivered a stable performance which can improve acetylene hydrochlorination activity and has resistance to catalytic deactivation. Here we show that nitrogen and sulfur co-doped activated carbon supported AuCl3 catalyst worked as efficient catalysts for the hydrochlorination of acetylene to vinyl chloride. Au/NSAC catalyst demonstrated high activity comparative to Au/AC catalyst. Furthermore, it also delivered stable performance within the selectivity of acetylene, reaching more than 99.5%, and there was only a 3.3% C2H2 conversion loss after running for 12 h under the reaction conditions of a temperature of 180 C and a C2H2 hourly space velocity of 1480 h 1. The presence of the sulfur atoms may serve to immobilize/ anchor the Au and also help prevent reduction and sintering of the Au and hence improve the catalytic activity and stability. The excellent catalytic performance of the Au/NSAC catalyst demonstrated its potential as an alternative to mercury chloride catalysts for acetylene hydrochlorination.