In this paper, we introduce and study a new system of variational inclusions involving (H, η)-monotone operators in Banach space. Using the resolveut operator associated with (H, η)- monotone operators, we prove...In this paper, we introduce and study a new system of variational inclusions involving (H, η)-monotone operators in Banach space. Using the resolveut operator associated with (H, η)- monotone operators, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the iterative sequence generated by the algorithm.展开更多
We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approx...We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108.展开更多
基金Foundation item: the Key Project of Chinese Ministry of Education (No. 207104) the Natural Science Foundation of Hebei Province (No. A2006000941).
文摘In this paper, we introduce and study a new system of variational inclusions involving (H, η)-monotone operators in Banach space. Using the resolveut operator associated with (H, η)- monotone operators, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the iterative sequence generated by the algorithm.
基金the Natural Science Foundation of China (No. 10471151)the Educational Science Foundation of Chongqing (KJ051307).
文摘We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108.