以青金桔原粉为研究对象,采集不同时间热处理的青金桔果粉近红外光谱(900~1700nm)信息,经不同预处理,运用偏最小二乘回归(partial least square regression,PLS)法建立β-胡萝卜素含量的预测模型,实现靑金桔果粉中β-胡萝卜素含量的快...以青金桔原粉为研究对象,采集不同时间热处理的青金桔果粉近红外光谱(900~1700nm)信息,经不同预处理,运用偏最小二乘回归(partial least square regression,PLS)法建立β-胡萝卜素含量的预测模型,实现靑金桔果粉中β-胡萝卜素含量的快速无损检测。试验结果显示,经标准正态变换(standard normal variate,SNV)预处理在1300~1700 nm范围内光谱信息构建的PLS模型,预测效果较好,模型均方根误差(RMSEC)、交叉验证均方根误差(RMSECV)、预测均方根误差(RM-SEP)分别为0.08、0.14和0.05,校正集决定系数(R2c)、交叉验证集决定系数(R2cv)和预测集决定系数(R2p)分别为0.95、0.87和0.95。由此表明,利用近红外光谱技术可潜在实现对青金桔果粉中β-桔胡萝卜素含量的快速检测。展开更多
文摘以青金桔原粉为研究对象,采集不同时间热处理的青金桔果粉近红外光谱(900~1700nm)信息,经不同预处理,运用偏最小二乘回归(partial least square regression,PLS)法建立β-胡萝卜素含量的预测模型,实现靑金桔果粉中β-胡萝卜素含量的快速无损检测。试验结果显示,经标准正态变换(standard normal variate,SNV)预处理在1300~1700 nm范围内光谱信息构建的PLS模型,预测效果较好,模型均方根误差(RMSEC)、交叉验证均方根误差(RMSECV)、预测均方根误差(RM-SEP)分别为0.08、0.14和0.05,校正集决定系数(R2c)、交叉验证集决定系数(R2cv)和预测集决定系数(R2p)分别为0.95、0.87和0.95。由此表明,利用近红外光谱技术可潜在实现对青金桔果粉中β-桔胡萝卜素含量的快速检测。