Rechargeable aqueous zinc-ion batteries(ZIBs) featuring the merits of low cost,eco-friendliness,and enhanced safety have attracted extensive interests and considered as the most promising energy storage system.However...Rechargeable aqueous zinc-ion batteries(ZIBs) featuring the merits of low cost,eco-friendliness,and enhanced safety have attracted extensive interests and considered as the most promising energy storage system.However,much efforts are devoted to the exploration of cathode materials and their storage mechanisms in this system,and inadequate attentions are received in regard to anode side especially in neutral or mild acidic electrolyte.Therefore,in this review,the fundamental understanding of existing issues including dendrite formation,corrosion,and hydrogen evolution are mainly revealed,as well as their interaction in neutral or mild acidic medium.In addition,the currently existing solution strategies on the anode are summarized and the mechanisms that contained are simultaneously investigated.Finally,perspectives on future anode modification and innovation direction are provided for the further development and research of Zn-based ZIBs.展开更多
The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems,due to the e...The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems,due to the environmental pollution and energy crisis caused by traditional energy storage technologies.As one of the new and most promising alternative energy storage technologies,zinc-ion rechargeable batteries have recently received much attention owing to their high abundance of zinc in natural resources,intrinsic safety,and cost effectiveness,when compared with the popular,but unsafe and expensive lithium-ion batteries.In particular,the use of mild aqueous electrolytes in zinc-ion batteries(ZIBs)demonstrates high potential for portable electronic applications and large-scale energy storage systems.Moreover,the development of superior electrolyte operating at either high temperature or subzero condition is crucial for practical applications of ZIBs in harsh environments,such as aerospace,airplanes,or submarines.However,there are still many existing challenges that need to be resolved.This paper presents a timely review on recent progresses and challenges in various cathode materials and electrolytes(aqueous,organic,and solid-state electrolytes)in ZIBs.Design and synthesis of zinc-based anode materials and separators are also briefly discussed.展开更多
Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herei...Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herein,we report a Cu-Zn alloy network-modulated zinc deposition interface to achieve stable anode-free ZIBs.The alloy network can not only stabilize the zinc deposition interface by suppressing 2D diffusion and corrosion reactions but also enhance zinc plating/stripping kinetics by accelerating zinc desolvation and nucleation processes.Consequently,the alloy network-modulated zinc deposition interface realizes high coulombic efficiency of 99.2%and high stability.As proof,Zn//Zn symmetric cells with the alloy network-modulated zinc deposition interface present long operation lifetimes of 1900 h at 1 m A/cm^(2)and 1200 h at 5 m A/cm^(2),significantly superior to Zn//Zn symmetric cells with unmodified zinc deposition interface(whose operation lifetime is shorter than 50 h),and meanwhile,Zn3V3O8cathodebased ZIBs with the alloy network-modified zinc anodes show notably enhanced rate capability and cycling performance than ZIBs with bare zinc anodes.As expected,the alloy network-modulated zinc deposition interface enables anode-free ZIBs with Zn3V3O8cathodes to deliver superior cycling stability,better than most currently-reported anode-free ZIBs.This work provides new thinking in constructing high-performance anode-free ZIBs and promotes the development of ZIBs.展开更多
Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices,raising higher requirements on the battery biocompatibility,high safety,low cost,and ex...Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices,raising higher requirements on the battery biocompatibility,high safety,low cost,and excellent electrochemical performance,which become the evaluation criteria toward developing feasible biocompatible batteries.Herein,through conducting the battery implantation tests and leakage scene simulations on New Zealand rabbits,zinc sulfate electrolyte is proved to exhibit higher biosecurity and turns out to be one of the ideal zinc salts for biocompatible zinc-ion batteries(ZIBs).Furthermore,in order to mitigate the notorious dendrite growth and hydrogen evolution in mildly acidic electrolyte as well as improve their operating stability,Sn hetero nucleus is introduced to stabilize the zinc anode,which not only facilitates the planar zinc deposition,but also contributes to higher hydrogen evolution overpotential.Finally,a long lifetime of 1500 h for the symmetrical cell,the specific capacity of 150 mAh g^(-1)under 0.5 A g^(-1)for the Zn-MnO_(2)battery and 212 mAh g^(-1)under 5 A g^(-1)for the Zn—NH4V4O10 battery are obtained.This work may provide unique perspectives on biocompatible ZIBs toward the biosecurity of their cell components.展开更多
基金supported by National Natural Science Foundation of China(Grants 51972346,51802356,51932011,and 51872334)Innovation-Driven Project of Central South University(2020CX024)
文摘Rechargeable aqueous zinc-ion batteries(ZIBs) featuring the merits of low cost,eco-friendliness,and enhanced safety have attracted extensive interests and considered as the most promising energy storage system.However,much efforts are devoted to the exploration of cathode materials and their storage mechanisms in this system,and inadequate attentions are received in regard to anode side especially in neutral or mild acidic electrolyte.Therefore,in this review,the fundamental understanding of existing issues including dendrite formation,corrosion,and hydrogen evolution are mainly revealed,as well as their interaction in neutral or mild acidic medium.In addition,the currently existing solution strategies on the anode are summarized and the mechanisms that contained are simultaneously investigated.Finally,perspectives on future anode modification and innovation direction are provided for the further development and research of Zn-based ZIBs.
基金the Economic Development Assistantship and the Research Enhancement Awards program sponsored by LaSPACE for financial support.
文摘The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems,due to the environmental pollution and energy crisis caused by traditional energy storage technologies.As one of the new and most promising alternative energy storage technologies,zinc-ion rechargeable batteries have recently received much attention owing to their high abundance of zinc in natural resources,intrinsic safety,and cost effectiveness,when compared with the popular,but unsafe and expensive lithium-ion batteries.In particular,the use of mild aqueous electrolytes in zinc-ion batteries(ZIBs)demonstrates high potential for portable electronic applications and large-scale energy storage systems.Moreover,the development of superior electrolyte operating at either high temperature or subzero condition is crucial for practical applications of ZIBs in harsh environments,such as aerospace,airplanes,or submarines.However,there are still many existing challenges that need to be resolved.This paper presents a timely review on recent progresses and challenges in various cathode materials and electrolytes(aqueous,organic,and solid-state electrolytes)in ZIBs.Design and synthesis of zinc-based anode materials and separators are also briefly discussed.
基金financial support provided by the National Natural Science Foundation of China(52002149)the Guangdong Basic and Applied Basic Research Foundation(2020A1515111202)+1 种基金the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds)(pdjh2022a0056)the Fundamental Research Funds for the Central Universities。
文摘Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herein,we report a Cu-Zn alloy network-modulated zinc deposition interface to achieve stable anode-free ZIBs.The alloy network can not only stabilize the zinc deposition interface by suppressing 2D diffusion and corrosion reactions but also enhance zinc plating/stripping kinetics by accelerating zinc desolvation and nucleation processes.Consequently,the alloy network-modulated zinc deposition interface realizes high coulombic efficiency of 99.2%and high stability.As proof,Zn//Zn symmetric cells with the alloy network-modulated zinc deposition interface present long operation lifetimes of 1900 h at 1 m A/cm^(2)and 1200 h at 5 m A/cm^(2),significantly superior to Zn//Zn symmetric cells with unmodified zinc deposition interface(whose operation lifetime is shorter than 50 h),and meanwhile,Zn3V3O8cathodebased ZIBs with the alloy network-modified zinc anodes show notably enhanced rate capability and cycling performance than ZIBs with bare zinc anodes.As expected,the alloy network-modulated zinc deposition interface enables anode-free ZIBs with Zn3V3O8cathodes to deliver superior cycling stability,better than most currently-reported anode-free ZIBs.This work provides new thinking in constructing high-performance anode-free ZIBs and promotes the development of ZIBs.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.82103472,82202480,and 52372252)the Hunan Natural Science Fund for Distinguished Young Scholar(2021JJ10064)the Program of Youth Talent Support for Hunan Province(2020RC3011).
文摘Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices,raising higher requirements on the battery biocompatibility,high safety,low cost,and excellent electrochemical performance,which become the evaluation criteria toward developing feasible biocompatible batteries.Herein,through conducting the battery implantation tests and leakage scene simulations on New Zealand rabbits,zinc sulfate electrolyte is proved to exhibit higher biosecurity and turns out to be one of the ideal zinc salts for biocompatible zinc-ion batteries(ZIBs).Furthermore,in order to mitigate the notorious dendrite growth and hydrogen evolution in mildly acidic electrolyte as well as improve their operating stability,Sn hetero nucleus is introduced to stabilize the zinc anode,which not only facilitates the planar zinc deposition,but also contributes to higher hydrogen evolution overpotential.Finally,a long lifetime of 1500 h for the symmetrical cell,the specific capacity of 150 mAh g^(-1)under 0.5 A g^(-1)for the Zn-MnO_(2)battery and 212 mAh g^(-1)under 5 A g^(-1)for the Zn—NH4V4O10 battery are obtained.This work may provide unique perspectives on biocompatible ZIBs toward the biosecurity of their cell components.