Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-neck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraul...Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-neck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system. A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hy- draulic fluid in the necks. Applying the Newton's second law of motion to the equivalent mechanical model of the resonator, closed-form expression of transmission loss and resonance frequency is presented. Based on the LPM, an optimal design method which employs rotate vector optimization method (RVOM) is proposed. The purpose of the optimal design is to search the reso- nator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively. The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system. The optimization result shows the feasibility of this method, and the simulation under optimum parame- ters reveals that the LPM can get the same precision as transfer matrix method (TMM).展开更多
The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorith...The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.展开更多
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-neck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system. A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hy- draulic fluid in the necks. Applying the Newton's second law of motion to the equivalent mechanical model of the resonator, closed-form expression of transmission loss and resonance frequency is presented. Based on the LPM, an optimal design method which employs rotate vector optimization method (RVOM) is proposed. The purpose of the optimal design is to search the reso- nator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively. The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system. The optimization result shows the feasibility of this method, and the simulation under optimum parame- ters reveals that the LPM can get the same precision as transfer matrix method (TMM).
基金Jiangsu Water Science and Technology Project(2021081)。
文摘The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.