ZrB_2–SiC/ZrSi_2 ceramics containing 30 vol% carbon fiber(Cf) additive were fabricated by hot pressing at low temperature(1500 ℃) using submicron ZrB_2 powders, and their microstructural evolution and performance we...ZrB_2–SiC/ZrSi_2 ceramics containing 30 vol% carbon fiber(Cf) additive were fabricated by hot pressing at low temperature(1500 ℃) using submicron ZrB_2 powders, and their microstructural evolution and performance were investigated. The addition of SiC or ZrSi_2 significantly reduced the onset sintering temperature and enhanced the densification of ZrB_2. ZrB_2–ZrSi_2–Cf showed poor performance owing to the serious fiber degradation, while the fiber degradation was effectively inhibited in ZrB_2–SiC–Cf resulting in high fracture toughness, substantial fiber pull-out, and non-brittle fracture mode for such material. The critical thermal shock temperature difference of ZrB_2–SiC–Cf was up to 741 ℃, significantly higher than those of ZrB_2–SiC/ZrSi_2 and ZrB_2–ZrSi_2–Cf. Moreover, this composite displayed a good oxidation resistance at 1500 ℃ in air.展开更多
Pure aluminum samples were processed by equal channel angular pressing(ECAP) up to 10 passes at room temperature. The effects of the ECAP number of passes on the microstructure evolution, the mechanical properties, ...Pure aluminum samples were processed by equal channel angular pressing(ECAP) up to 10 passes at room temperature. The effects of the ECAP number of passes on the microstructure evolution, the mechanical properties, deformation homogeneity and corrosion behavior of the processed samples were fully investigated. The imposed strain resulted in an obvious reduction in the grain size from 390 μm before ECAP down to 1.8, 0.4, and 0.3 μm after ECAP up to 2, 4 and 10 passes, respectively. The microhardness, deformation homogeneity and tensile strength were increased while the elongation decreased with the increase of ECAP number of passes. Immersion tests, open circuit potential, Tafel polarization, cyclic polarization and potentiostatic measurements in 3.5% Na Cl solution revealed an obvious improvement in the corrosion resistance of ECAP processed samples compared with the as-cast sample. The increase of the number of passes can be used successfully in producing ultra-fine grained(UFG) bulk pure aluminum sample with a high misorientation angle, reasonably high mechanical properties and corrosion resistance.展开更多
Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior....Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior. Electrochemical tests show that the fine-grained samples after more ECAP passes have higher corrosion current densities(Jcorr) in the polarization curves, lower charge-transfer resistance(Rt) values in the EIS plots. The severe plastic deformation decreases the alloy corrosion resistance besides the well-known strengthening and toughening. Scanning Kelvin probe(SKP) measurement shows that the anodic and cathode sites are homogeneously distributed on the surface of the fine-grained alloy, which inhibits localized corrosion. The SKP potential, having linear relationship with the corrosion potential(φcorr), decreases with increasing the ECAP pass. Furthermore, the post-ECAP aging can slightly improve the corrosion resistance of the fine-grained ZK60 Mg alloy and enhance the comprehensive performances, due to the stress relief and uniform distribution of second-phase particles.展开更多
The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investiga...The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investigated systematically. The results show that the corrosion resistance of FeNi coated LaFe_(11.6)Si_(1.4)Sn composites is better than that of LaFe_(11.6)Si_(1.4)/Sn composites in deionized water. The maximum magnetic entropy change((-△S_M)^(max)) and relative cooling power(RCP) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites are 13.30 J/(kg-K) and 146.25 J/kg, respectively, which are larger than that((-△S_M)^(max), 10.65 J/(kg·K) and RCP, 106.53 J/kg) of LaFe_(11.6)Si_(1.4)/Sn composites in a low magnetic field change of 2 T. FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites possess a more negative slope. The improvement of magnetic properties is due to high permeability FeNi permalloy(1 J85) which improves the itinerant-electron metamagnetic(IEM) transition. So, the method of coating FeNi can provide a new idea for enhancing the corrosion resistance and magnetocaloric effect of La(Fe_xSi_(1-x))_(13)-based materials.展开更多
The solution of the intermetallic phase and the homogenization of composition are important for Mg alloy biomaterials.A single-phase Mg-6Zn alloy with the average grain size of about 20μm was prepared by ECAP process...The solution of the intermetallic phase and the homogenization of composition are important for Mg alloy biomaterials.A single-phase Mg-6Zn alloy with the average grain size of about 20μm was prepared by ECAP processed for six passes at 320°C.It indicated that the ECAP could significantly promote the process of solid solution in Mg-Zn alloy.The results showed that complete dissolution of the intermetallic phase improved the corrosion resistance of Mg-6Zn alloy in 0.9%NaCl solution by turning the corrosion behavior into uniform corrosion and increased the hardness in combination with its smaller grain size.展开更多
Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powde...Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powders were synthesized by direct electrochemical reduction in molten salt from the mixed metal oxides. Then,TiN ceramic coating on the AlCrFeNiTi_x bulk HEA containing the topologically close-packed(TCP) phase(σphase, Laves phase, and Ti_(3)Al phase) was prepared by vacuum hot pressing sintering, where nitride element come from boron nitride parting agent sprayed on the graphite mold. The effect of titanium content on the crystal structure, microstructure, hardness, and wear resistance of the products were investigated by X-ray diffraction, field emission scanning electron microscope, field emission electron-probe microanalysis,Vickers hardness tester, and friction–abrasion testing machine. The bulk HEAs exhibit excellent hardness and its hardness increases significantly with the increase of titanium content. The wear mechanism changes from both of predominantly delamination and accompanied oxidative wear to single delamination wear,which is due to ultra-high melting point and high hot hardness of TiN, that can effectively prevent the oxidation and deformation of the worn surface. Formation of the ceramic coatings containing the TiN second phase and TCP phase are the key factor to AlCrFeNiTi_x alloy with the excellent hardness and wear properties.展开更多
基金provided by Scientific Research Starting Foundation of Anhui Polytechnic University of China (No.2017YQQ009)the Fundamental Research Funds for the Central Universities (Grant No.HIT.BRETIII.201506)
文摘ZrB_2–SiC/ZrSi_2 ceramics containing 30 vol% carbon fiber(Cf) additive were fabricated by hot pressing at low temperature(1500 ℃) using submicron ZrB_2 powders, and their microstructural evolution and performance were investigated. The addition of SiC or ZrSi_2 significantly reduced the onset sintering temperature and enhanced the densification of ZrB_2. ZrB_2–ZrSi_2–Cf showed poor performance owing to the serious fiber degradation, while the fiber degradation was effectively inhibited in ZrB_2–SiC–Cf resulting in high fracture toughness, substantial fiber pull-out, and non-brittle fracture mode for such material. The critical thermal shock temperature difference of ZrB_2–SiC–Cf was up to 741 ℃, significantly higher than those of ZrB_2–SiC/ZrSi_2 and ZrB_2–ZrSi_2–Cf. Moreover, this composite displayed a good oxidation resistance at 1500 ℃ in air.
文摘Pure aluminum samples were processed by equal channel angular pressing(ECAP) up to 10 passes at room temperature. The effects of the ECAP number of passes on the microstructure evolution, the mechanical properties, deformation homogeneity and corrosion behavior of the processed samples were fully investigated. The imposed strain resulted in an obvious reduction in the grain size from 390 μm before ECAP down to 1.8, 0.4, and 0.3 μm after ECAP up to 2, 4 and 10 passes, respectively. The microhardness, deformation homogeneity and tensile strength were increased while the elongation decreased with the increase of ECAP number of passes. Immersion tests, open circuit potential, Tafel polarization, cyclic polarization and potentiostatic measurements in 3.5% Na Cl solution revealed an obvious improvement in the corrosion resistance of ECAP processed samples compared with the as-cast sample. The increase of the number of passes can be used successfully in producing ultra-fine grained(UFG) bulk pure aluminum sample with a high misorientation angle, reasonably high mechanical properties and corrosion resistance.
基金Project(BK20131373)supported by the Natural Science Foundation of Jiangsu ProvinceChina
文摘Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior. Electrochemical tests show that the fine-grained samples after more ECAP passes have higher corrosion current densities(Jcorr) in the polarization curves, lower charge-transfer resistance(Rt) values in the EIS plots. The severe plastic deformation decreases the alloy corrosion resistance besides the well-known strengthening and toughening. Scanning Kelvin probe(SKP) measurement shows that the anodic and cathode sites are homogeneously distributed on the surface of the fine-grained alloy, which inhibits localized corrosion. The SKP potential, having linear relationship with the corrosion potential(φcorr), decreases with increasing the ECAP pass. Furthermore, the post-ECAP aging can slightly improve the corrosion resistance of the fine-grained ZK60 Mg alloy and enhance the comprehensive performances, due to the stress relief and uniform distribution of second-phase particles.
基金Project supported by the Key Project of National Natural Science Foundation of China(51176065)
文摘The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investigated systematically. The results show that the corrosion resistance of FeNi coated LaFe_(11.6)Si_(1.4)Sn composites is better than that of LaFe_(11.6)Si_(1.4)/Sn composites in deionized water. The maximum magnetic entropy change((-△S_M)^(max)) and relative cooling power(RCP) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites are 13.30 J/(kg-K) and 146.25 J/kg, respectively, which are larger than that((-△S_M)^(max), 10.65 J/(kg·K) and RCP, 106.53 J/kg) of LaFe_(11.6)Si_(1.4)/Sn composites in a low magnetic field change of 2 T. FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites possess a more negative slope. The improvement of magnetic properties is due to high permeability FeNi permalloy(1 J85) which improves the itinerant-electron metamagnetic(IEM) transition. So, the method of coating FeNi can provide a new idea for enhancing the corrosion resistance and magnetocaloric effect of La(Fe_xSi_(1-x))_(13)-based materials.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(Grant no.51301151)Jiangsu Province Natural Science Foundation of China(Grant nos.BK20130447 and BK20160869).
文摘The solution of the intermetallic phase and the homogenization of composition are important for Mg alloy biomaterials.A single-phase Mg-6Zn alloy with the average grain size of about 20μm was prepared by ECAP processed for six passes at 320°C.It indicated that the ECAP could significantly promote the process of solid solution in Mg-Zn alloy.The results showed that complete dissolution of the intermetallic phase improved the corrosion resistance of Mg-6Zn alloy in 0.9%NaCl solution by turning the corrosion behavior into uniform corrosion and increased the hardness in combination with its smaller grain size.
基金supported by the National Natural Science Foundation of China (52174299)the Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China。
文摘Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powders were synthesized by direct electrochemical reduction in molten salt from the mixed metal oxides. Then,TiN ceramic coating on the AlCrFeNiTi_x bulk HEA containing the topologically close-packed(TCP) phase(σphase, Laves phase, and Ti_(3)Al phase) was prepared by vacuum hot pressing sintering, where nitride element come from boron nitride parting agent sprayed on the graphite mold. The effect of titanium content on the crystal structure, microstructure, hardness, and wear resistance of the products were investigated by X-ray diffraction, field emission scanning electron microscope, field emission electron-probe microanalysis,Vickers hardness tester, and friction–abrasion testing machine. The bulk HEAs exhibit excellent hardness and its hardness increases significantly with the increase of titanium content. The wear mechanism changes from both of predominantly delamination and accompanied oxidative wear to single delamination wear,which is due to ultra-high melting point and high hot hardness of TiN, that can effectively prevent the oxidation and deformation of the worn surface. Formation of the ceramic coatings containing the TiN second phase and TCP phase are the key factor to AlCrFeNiTi_x alloy with the excellent hardness and wear properties.