Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial ro...Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial role in determining the ADME (absorption, distribution, metabolism, and excretion) and bioavailability of the pollutants. The binding interaction between HSA and acetic acid (C2), octanoic acid (C8) and dodecanoic acid (C12) has been investigated by the combination of site-specific fluorescent probe, tryptophan intrinsic fluorescence and tyrosine electrochemistry. For the study of the fatty acid interaction with the two drug-binding sites on HSA, two fluorescent probes, dansylamide and dansyl-L-proline were employed in the displacement measurements. Intrinsic fluorescence of tryptophan in HSA was monitored upon addition of the fatty acids into HSA. Electrocatalyzed response of the tyrosine residues in HSA by a redox mediator was used to investigate the binding interaction. Qualitatively, observations from these three approaches were very similar. HSA did not show any change in the fluorescence and electrochemical experiments after mixing with C2, suggesting there is no significant interaction with the short-chain fatty acid. For C8, the measured signal dropped in a single-exponential mode, indicating an independent and non-cooperative binding. The calculated association constant and binding ratio were 3.1 × 10^6 L/mol and 1 with drug binding Site Ⅰ, 1.1 × 107 L/mol and 1 with Site Ⅱ, and 7.0× 0^4 L/mol and 4 with the tryptophan site, respectively. The measurements with C12 displayed multiple phases of fluorescence change, suggesting cooperativity and allosteric effect of the C12 binding. These results correlate well with those obtained by the established methods, and validate the new approach as a viable tool to study the interactions of environmental pollutants with biological molecules.展开更多
Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular...Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular matrix-cell interaction, and gene expression pattern. However, no study has been reported on the differences in lipid metabolism and distribution among 2D cancer cells, MCTS, and solid tumors. Here, we used Hep G2 liver cancer cell lines to establish these three cancer models. The variations of lipid profiles and spatial distribution among them were explored by using mass spectrometry-based lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging(MSI). The results revealed that MCTS, relative to 2D cells, had more shared lipid species with solid tumors. Furthermore,MCTS contained more comparable characteristics than 2D cells to solid tumors with respect to the relative abundance of most lipid classes and mass spectra patterns. MSI data showed that 46 of 71 lipids had similar spatial distribution between solid tumors and MCTS, while lipids in 2D cells had no specific spatial distribution. Interestingly, most of detected lipid species in sphingolipids and glycerolipids preferred locating in the necrotic region to the proliferative region of solid tumors and MCTS. Taken together, our study provides the evidence of lipid metabolism and distribution demonstrating that MCTS are a more suitable in vitro model to mimic solid tumors, which may offer insights into tumor metabolism and microenvironment.展开更多
Transporters are membrane proteins mediating permeation of organic and inorganic solutes through the plasma membrane and membranes of intracellular organella.They play essential roles in the epithelial absorption and ...Transporters are membrane proteins mediating permeation of organic and inorganic solutes through the plasma membrane and membranes of intracellular organella.They play essential roles in the epithelial absorption and cellular uptake of nutrients as well as absorption,distribution,metabolism,and excretion of drugs.Because transporters contribute to determining the distribution of compounds in the body in concert with metabolic/synthetic enzymes,the drugs that affect the functions of transporters are expected to alter the distribution of compounds in the body and to ameliorate disrupted homeostasis.In this context,drugs targeting transporters have been used clinically.Such drugs include antidepressants targeting monoamine transporters,diuretics targeting inorganic ion transporters of renal tubules,and uricosuric agents targeting renal urate transporters.Now new transporter-targeting drugs designed based on post-genome drug development strategy have been in the process of clinical trials or basic/clinical researches.For example,the inhibitors of renal Na+/glucose cotransporter SGLT2 have been proved for their efficacy in the treatment of diabetes mellitus.The cancer L-type amino acid transporter 1(LAT1) has been considered as a target of cancer diagnosis and therapeutics.The transporter-targeting drugs are expected to provide new rationale in the therapeutics of various diseases.展开更多
基金supported by the National Basic Re-search Program of China (No. 2006CB403303)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-420-1)the National Natural Science Foundation of China (No. 20890112)
文摘Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial role in determining the ADME (absorption, distribution, metabolism, and excretion) and bioavailability of the pollutants. The binding interaction between HSA and acetic acid (C2), octanoic acid (C8) and dodecanoic acid (C12) has been investigated by the combination of site-specific fluorescent probe, tryptophan intrinsic fluorescence and tyrosine electrochemistry. For the study of the fatty acid interaction with the two drug-binding sites on HSA, two fluorescent probes, dansylamide and dansyl-L-proline were employed in the displacement measurements. Intrinsic fluorescence of tryptophan in HSA was monitored upon addition of the fatty acids into HSA. Electrocatalyzed response of the tyrosine residues in HSA by a redox mediator was used to investigate the binding interaction. Qualitatively, observations from these three approaches were very similar. HSA did not show any change in the fluorescence and electrochemical experiments after mixing with C2, suggesting there is no significant interaction with the short-chain fatty acid. For C8, the measured signal dropped in a single-exponential mode, indicating an independent and non-cooperative binding. The calculated association constant and binding ratio were 3.1 × 10^6 L/mol and 1 with drug binding Site Ⅰ, 1.1 × 107 L/mol and 1 with Site Ⅱ, and 7.0× 0^4 L/mol and 4 with the tryptophan site, respectively. The measurements with C12 displayed multiple phases of fluorescence change, suggesting cooperativity and allosteric effect of the C12 binding. These results correlate well with those obtained by the established methods, and validate the new approach as a viable tool to study the interactions of environmental pollutants with biological molecules.
基金supported by National Natural Science Foundation of China (Nos. 22036001, 22106130 and 91843301)Research Grant Council (Nos. 463612 and 14104314) of Hong Kong。
文摘Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular matrix-cell interaction, and gene expression pattern. However, no study has been reported on the differences in lipid metabolism and distribution among 2D cancer cells, MCTS, and solid tumors. Here, we used Hep G2 liver cancer cell lines to establish these three cancer models. The variations of lipid profiles and spatial distribution among them were explored by using mass spectrometry-based lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging(MSI). The results revealed that MCTS, relative to 2D cells, had more shared lipid species with solid tumors. Furthermore,MCTS contained more comparable characteristics than 2D cells to solid tumors with respect to the relative abundance of most lipid classes and mass spectra patterns. MSI data showed that 46 of 71 lipids had similar spatial distribution between solid tumors and MCTS, while lipids in 2D cells had no specific spatial distribution. Interestingly, most of detected lipid species in sphingolipids and glycerolipids preferred locating in the necrotic region to the proliferative region of solid tumors and MCTS. Taken together, our study provides the evidence of lipid metabolism and distribution demonstrating that MCTS are a more suitable in vitro model to mimic solid tumors, which may offer insights into tumor metabolism and microenvironment.
基金Culture,Sports,Science,and Technology of JapanGrants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science+1 种基金Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)A Grant-in-Aid for Scientific Research on Priority Areas of "Transportsome" from the Ministry of Education,Chinese Ministry of Sciences and Technology Research Grant (2009ZX09304-002)
文摘Transporters are membrane proteins mediating permeation of organic and inorganic solutes through the plasma membrane and membranes of intracellular organella.They play essential roles in the epithelial absorption and cellular uptake of nutrients as well as absorption,distribution,metabolism,and excretion of drugs.Because transporters contribute to determining the distribution of compounds in the body in concert with metabolic/synthetic enzymes,the drugs that affect the functions of transporters are expected to alter the distribution of compounds in the body and to ameliorate disrupted homeostasis.In this context,drugs targeting transporters have been used clinically.Such drugs include antidepressants targeting monoamine transporters,diuretics targeting inorganic ion transporters of renal tubules,and uricosuric agents targeting renal urate transporters.Now new transporter-targeting drugs designed based on post-genome drug development strategy have been in the process of clinical trials or basic/clinical researches.For example,the inhibitors of renal Na+/glucose cotransporter SGLT2 have been proved for their efficacy in the treatment of diabetes mellitus.The cancer L-type amino acid transporter 1(LAT1) has been considered as a target of cancer diagnosis and therapeutics.The transporter-targeting drugs are expected to provide new rationale in the therapeutics of various diseases.