为充分利用永磁超环面电机的电磁转矩,研究了超环面电机最大转矩电流比MTPA(maximum torque per ampere)矢量控制系统。首先,分析了超环面电机蜗杆内定子变截面的结构特点和行星轮磁齿的运动规律,推导了永磁超环面电机驱动系统的时变数...为充分利用永磁超环面电机的电磁转矩,研究了超环面电机最大转矩电流比MTPA(maximum torque per ampere)矢量控制系统。首先,分析了超环面电机蜗杆内定子变截面的结构特点和行星轮磁齿的运动规律,推导了永磁超环面电机驱动系统的时变数学模型;然后基于极值原理和公式法,得到永磁超环面电机输出转矩与交直轴电流的函数关系;结合闭环反馈得到行星轮转子的位置信息,搭建了该电机的MTPA控制系统,并对MPTA控制策略下的超环面电机响应性能进行了仿真分析。仿真结果表明,MTPA控制策略能够提高超环面电机电磁转矩的利用率,有效降低该电机的功率损耗,同时该控制系统具有良好的抗扰性能以及对参数变化的鲁棒性。展开更多
Extremum principle for very weak solutions of A-harmonic equation div A(x,▽u)=0 is obtained, where the operator A:Ω × Rn→Rnsatisfies some coercivity and controllable growth conditions with Mucken-houpt weight.
The Riemann hypothesis is a well-known mathematical problem that has been in suspense for 162 years. Its difficulty lies in the fact that it is involved in an infinite integral which includes infinite series with comp...The Riemann hypothesis is a well-known mathematical problem that has been in suspense for 162 years. Its difficulty lies in the fact that it is involved in an infinite integral which includes infinite series with complex variables. To detour this is in vain, since all the messages are hid in it. To unscramble them, there is a totally new idea, that is, the “periodicity”! By investigating the numerical approximate values of zero points, an explicit distribution law on the critical line was found. To accord with this, a periodic form for the real part of Xi function was constructed and rigidly proved. The Riemann hypothesis can be divided into three progressive propositions. The first proposition (the number of zero points in the critical strip satisfies a certain estimation) had been proved in 1905. The second proposition (the number of zero points on the critical line satisfies the same estimation as in the critical strip) is ever in suspense. It can be solved perfectly with the newly found “periodicity”. The third proposition (all the nontrivial zero points are on the critical line), that is, the Riemann hypothesis, is also true. The proof is a combination of the symmetry, monotonicity, periodicity of the Xi function and the extremum principle of the harmonic functions. It is the moment to draw full stop for this suspending problem.展开更多
文摘为充分利用永磁超环面电机的电磁转矩,研究了超环面电机最大转矩电流比MTPA(maximum torque per ampere)矢量控制系统。首先,分析了超环面电机蜗杆内定子变截面的结构特点和行星轮磁齿的运动规律,推导了永磁超环面电机驱动系统的时变数学模型;然后基于极值原理和公式法,得到永磁超环面电机输出转矩与交直轴电流的函数关系;结合闭环反馈得到行星轮转子的位置信息,搭建了该电机的MTPA控制系统,并对MPTA控制策略下的超环面电机响应性能进行了仿真分析。仿真结果表明,MTPA控制策略能够提高超环面电机电磁转矩的利用率,有效降低该电机的功率损耗,同时该控制系统具有良好的抗扰性能以及对参数变化的鲁棒性。
文摘Extremum principle for very weak solutions of A-harmonic equation div A(x,▽u)=0 is obtained, where the operator A:Ω × Rn→Rnsatisfies some coercivity and controllable growth conditions with Mucken-houpt weight.
文摘The Riemann hypothesis is a well-known mathematical problem that has been in suspense for 162 years. Its difficulty lies in the fact that it is involved in an infinite integral which includes infinite series with complex variables. To detour this is in vain, since all the messages are hid in it. To unscramble them, there is a totally new idea, that is, the “periodicity”! By investigating the numerical approximate values of zero points, an explicit distribution law on the critical line was found. To accord with this, a periodic form for the real part of Xi function was constructed and rigidly proved. The Riemann hypothesis can be divided into three progressive propositions. The first proposition (the number of zero points in the critical strip satisfies a certain estimation) had been proved in 1905. The second proposition (the number of zero points on the critical line satisfies the same estimation as in the critical strip) is ever in suspense. It can be solved perfectly with the newly found “periodicity”. The third proposition (all the nontrivial zero points are on the critical line), that is, the Riemann hypothesis, is also true. The proof is a combination of the symmetry, monotonicity, periodicity of the Xi function and the extremum principle of the harmonic functions. It is the moment to draw full stop for this suspending problem.