为了提高增程式电动车的燃油经济性,在传统定点控制式发动机管理策略的基础上,提出了模糊控制式管理策略,对不同的发动机管理策略进行了仿真研究。在CRUISE软件中建立了增程式电动车的驱动系统模型,并在Simulink软件中搭建了发动机管理...为了提高增程式电动车的燃油经济性,在传统定点控制式发动机管理策略的基础上,提出了模糊控制式管理策略,对不同的发动机管理策略进行了仿真研究。在CRUISE软件中建立了增程式电动车的驱动系统模型,并在Simulink软件中搭建了发动机管理策略模型。在模糊逻辑控制器中,使用T-S模糊系统和Mamdani模糊系统,建立了模糊控制规则。在全球统一轻型车测试规程(worldwide light-duty test cycle,WLTC)循环工况下进行了联合仿真,将模糊控制式管理策略与定点控制式管理策略的结果进行了对比分析。仿真结果显示,与定点控制式管理策略相比,基于T-S模糊系统和Mamdani模糊系统的发动机管理策略分别使增程式电动车的燃油经济性提高了12.52%和10.60%。其中,基于T-S模糊系统的发动机管理策略效果更好,燃油经济性更优。展开更多
文摘为了提高增程式电动车的燃油经济性,在传统定点控制式发动机管理策略的基础上,提出了模糊控制式管理策略,对不同的发动机管理策略进行了仿真研究。在CRUISE软件中建立了增程式电动车的驱动系统模型,并在Simulink软件中搭建了发动机管理策略模型。在模糊逻辑控制器中,使用T-S模糊系统和Mamdani模糊系统,建立了模糊控制规则。在全球统一轻型车测试规程(worldwide light-duty test cycle,WLTC)循环工况下进行了联合仿真,将模糊控制式管理策略与定点控制式管理策略的结果进行了对比分析。仿真结果显示,与定点控制式管理策略相比,基于T-S模糊系统和Mamdani模糊系统的发动机管理策略分别使增程式电动车的燃油经济性提高了12.52%和10.60%。其中,基于T-S模糊系统的发动机管理策略效果更好,燃油经济性更优。