There have been various studies on approximation ability of feedforward neural networks (FNNs). Most of the existing studies are, however, only concerned with density or upper bound estimation on how a multivariate fu...There have been various studies on approximation ability of feedforward neural networks (FNNs). Most of the existing studies are, however, only concerned with density or upper bound estimation on how a multivariate function can be approximated by an FNN, and consequently, the essential approximation ability of an FNN cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approximation ability (namely, the essential approximation order) of a class of FNNs is clarified in terms of the modulus of smoothness of functions to be approximated. The involved FNNs can not only approximate any continuous or integrable functions defined on a compact set arbitrarily well, but also provide an explicit lower bound on the number of hidden units required. By making use of multivariate approximation tools, it is shown that when the functions to be approximated are Lipschitzian with order up to 2, the approximation speed of the FNNs is uniquely determined by modulus of smoothness of the functions.展开更多
Let D be a smooth domain in the complex plane. In D consider the simultaneous ap- proximation to a function and its ith (0≤i≤q) derivatives by Hermite interpolation. The orders of uniform approximation and approxima...Let D be a smooth domain in the complex plane. In D consider the simultaneous ap- proximation to a function and its ith (0≤i≤q) derivatives by Hermite interpolation. The orders of uniform approximation and approximation in the mean, are obtained under some domain boundary conditions. Some known results are included as particular cases of the theorems of this paper.展开更多
An algorithm is presented for raising an approximation order of any given orthogonal multiscaling function with the dilation factor a. Let φ(x) = [φ1(x),φ2(x),…,φr(x)]T be an orthogonal multiscaling function with...An algorithm is presented for raising an approximation order of any given orthogonal multiscaling function with the dilation factor a. Let φ(x) = [φ1(x),φ2(x),…,φr(x)]T be an orthogonal multiscaling function with the dilation factor a and the approximation order m. We can construct a new orthogonal multiscaling function φnew(x) = [ φT(x). f3r+1(x),φr+2(x),…,φr+s(x)}T with the approximation order m + L(L ∈ Z+). In other words, we raise the approximation order of multiscaling function φ(x) by increasing its multiplicity. In addition, we discuss an especial setting. That is, if given an orthogonal multiscaling function φ(x) = [φ1 (x), φ2(x), …, φr(x)]T is symmetric, then the new orthogonal multiscaling function φnew(x) not only raise the approximation order but also preserve symmetry. Finally, some examples are given.展开更多
The concept of two-direction refinable functions and two-direction wavelets is introduced.We investigate the existence of distributional(or L2-stable) solutions of the two-direction refinement equation: φ(x)=∑p+kφ(...The concept of two-direction refinable functions and two-direction wavelets is introduced.We investigate the existence of distributional(or L2-stable) solutions of the two-direction refinement equation: φ(x)=∑p+kφ(mx-k)+∑p-kφ(k-mx) where m ≥ 2 is an integer. Based on the positive mask {pk+} and negative mask {p-k}, the conditions that guarantee the above equation has compactly distributional solutions or L2-stable solutions are established. Furthermore, the condition that the L2-stable solution of the above equation can generate a two-direction MRA is given. The support interval of φ(x) is discussed amply. The definition of orthogonal two-direction refinable function and orthogonal two-direction wavelets is presented, and the orthogonality criteria for two-direction refinable functions are established. An algorithm for constructing orthogonal two-direction refinable functions and their two-direction wavelets is presented. Another construction algorithm for two-direction L2-refinable functions, which have nonnegative symbol masks and possess high approximation order and regularity, is presented. Finally, two construction examples are given.展开更多
This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is p...This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.展开更多
The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogon...The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogonal multiscaling functions. What is more, by applying PTST, we present an algorithm of constructing high order balanced multiscaling functions by balancing the already existing orthogonal nonbalanced multiscaling functions. The corresponding transform matrix is given explicitly. In addition, we also investigate the symmetry of the balanced multiscaling functions. Finally, construction examples are given.展开更多
Let Γ be a closed smooth Jordan curve in the complex plane. In this paper, with the help of a class of fundamental functions of Hermite interpolation, the author introduces a continuous function interpolation which u...Let Γ be a closed smooth Jordan curve in the complex plane. In this paper, with the help of a class of fundamental functions of Hermite interpolation, the author introduces a continuous function interpolation which uniformly approximates to f(z) ∈ C(Γ ) with the same order of approximation as that in Jackson Theorem 1 on real interval [1, 1]. The accuracy of the order of approximation is proved. Using the method different from the early works, the author studies simultaneous approximation to function and its derivatives and the desired results analogues to that in Jackson Theorem 2 on real interval [1, 1] are obtained.展开更多
In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] ...In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.展开更多
文摘There have been various studies on approximation ability of feedforward neural networks (FNNs). Most of the existing studies are, however, only concerned with density or upper bound estimation on how a multivariate function can be approximated by an FNN, and consequently, the essential approximation ability of an FNN cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approximation ability (namely, the essential approximation order) of a class of FNNs is clarified in terms of the modulus of smoothness of functions to be approximated. The involved FNNs can not only approximate any continuous or integrable functions defined on a compact set arbitrarily well, but also provide an explicit lower bound on the number of hidden units required. By making use of multivariate approximation tools, it is shown that when the functions to be approximated are Lipschitzian with order up to 2, the approximation speed of the FNNs is uniquely determined by modulus of smoothness of the functions.
文摘Let D be a smooth domain in the complex plane. In D consider the simultaneous ap- proximation to a function and its ith (0≤i≤q) derivatives by Hermite interpolation. The orders of uniform approximation and approximation in the mean, are obtained under some domain boundary conditions. Some known results are included as particular cases of the theorems of this paper.
基金supported by the National Natural Science Foundation of China(Grant No.90104004&10471002)973 project of China(Grant No.G1999075105)+1 种基金the Natural Science Foundation of Guangdong Province(Grant No.05008289&032038)the Doctoral Foundation of Guangdong Province(Grant No.04300917).
文摘An algorithm is presented for raising an approximation order of any given orthogonal multiscaling function with the dilation factor a. Let φ(x) = [φ1(x),φ2(x),…,φr(x)]T be an orthogonal multiscaling function with the dilation factor a and the approximation order m. We can construct a new orthogonal multiscaling function φnew(x) = [ φT(x). f3r+1(x),φr+2(x),…,φr+s(x)}T with the approximation order m + L(L ∈ Z+). In other words, we raise the approximation order of multiscaling function φ(x) by increasing its multiplicity. In addition, we discuss an especial setting. That is, if given an orthogonal multiscaling function φ(x) = [φ1 (x), φ2(x), …, φr(x)]T is symmetric, then the new orthogonal multiscaling function φnew(x) not only raise the approximation order but also preserve symmetry. Finally, some examples are given.
基金This work was Supported by the Natural Science Foundation of Guangdong Province (Grant Nos.06105648,05008289,032038)the Doctoral Foundation of Guangdong Province (Grant No.04300917)
文摘The concept of two-direction refinable functions and two-direction wavelets is introduced.We investigate the existence of distributional(or L2-stable) solutions of the two-direction refinement equation: φ(x)=∑p+kφ(mx-k)+∑p-kφ(k-mx) where m ≥ 2 is an integer. Based on the positive mask {pk+} and negative mask {p-k}, the conditions that guarantee the above equation has compactly distributional solutions or L2-stable solutions are established. Furthermore, the condition that the L2-stable solution of the above equation can generate a two-direction MRA is given. The support interval of φ(x) is discussed amply. The definition of orthogonal two-direction refinable function and orthogonal two-direction wavelets is presented, and the orthogonality criteria for two-direction refinable functions are established. An algorithm for constructing orthogonal two-direction refinable functions and their two-direction wavelets is presented. Another construction algorithm for two-direction L2-refinable functions, which have nonnegative symbol masks and possess high approximation order and regularity, is presented. Finally, two construction examples are given.
基金supported by the National Natural Science Foundation of China (Grant No. 10761003)Guizhou Province Scientific Research for Senior Personnels
文摘This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.
基金supported by the National Natural Science Foundation of China(Grant Nos.90104004 and 10471002)the 973 Project of China(Grant Nos.G1999075105)+1 种基金the Natural Science Foundation of Guangdong Province(Grant Nos.032038,05008289)the Doctoral Foundation of Guangdong Province(Grant No.04300917).
文摘The concept of paraunitary two-scale similarity transform (PTST) is introduced. We discuss the property of PTST, and prove that PTST preserves the orthogonal, approximation order and smoothness of the given orthogonal multiscaling functions. What is more, by applying PTST, we present an algorithm of constructing high order balanced multiscaling functions by balancing the already existing orthogonal nonbalanced multiscaling functions. The corresponding transform matrix is given explicitly. In addition, we also investigate the symmetry of the balanced multiscaling functions. Finally, construction examples are given.
文摘Let Γ be a closed smooth Jordan curve in the complex plane. In this paper, with the help of a class of fundamental functions of Hermite interpolation, the author introduces a continuous function interpolation which uniformly approximates to f(z) ∈ C(Γ ) with the same order of approximation as that in Jackson Theorem 1 on real interval [1, 1]. The accuracy of the order of approximation is proved. Using the method different from the early works, the author studies simultaneous approximation to function and its derivatives and the desired results analogues to that in Jackson Theorem 2 on real interval [1, 1] are obtained.
文摘In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.