There exist interactions among pedestrians and between pedestrian and environment in evacuation. These interactions include attraction, repulsion and friction that play key roles in human evacuation behaviors, speed a...There exist interactions among pedestrians and between pedestrian and environment in evacuation. These interactions include attraction, repulsion and friction that play key roles in human evacuation behaviors, speed and efficiency. Most former evacuation models focus on the attraction force, while repulsion and friction are not well modeled. As a kind of multi-particle self-driven model, the social force model introduced in recent years can represent those three forces but with low simulation efficiency because it is a continuous model with complex rules. Discrete models such as the cellular automata model and the lattice gas model have simple rules and high simulation efficiency, but are not quite suitable for interactions’ simulation. In this paper, a new cellular automata model based on traditional models is introduced in which repulsion and friction are modeled quantitatively. It is indicated that the model can simulate some basic behaviors, e.g. arching and the “faster-is-slower” phenomenon, in evacuation as multi-particle self-driven models, but with high efficiency as the normal cellular automata model and the lattice gas model.展开更多
Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain.However,high-performance broadband self-driven photodetectors ...Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain.However,high-performance broadband self-driven photodetectors are still a significant challenge due to the complex fabrication processes,environmental toxicity,high production costs of traditional 3D semiconductor materials and sharply raised contact resistance,severe interfacial recombination of 2D materials and 2D/3D mixed dimension heterojunction.Here,1D p-Te/2D n-Bi_(2)Te_(3) heterojunctions are constructed by the simple and low-cost hydrothermal method.1D p-Te/2D n-Bi_(2)Te_(3) devices are applied in photoelectrochemical(PEC)photodetectors,with their high performance attributed to the good interfacial contacts reducing interface recombination.The device demonstrated a broad wavelength range(365–850 nm)with an Iph/Idark as high as 377.45.The R_(i),D^(*),and external quantum efficiency(EQE)values of the device were as high as 12.07 mA/W,5.87×10^(10) Jones,and 41.05%,respectively,which were significantly better than the performance of the prepared Bi_(2)Te_(3) and Te devices.A comparison of the freshly fabricated device and the device after 30 days showed that 1D p-Te/2D n-Bi_(2)Te_(3) had excellent stability with only 18.08%decay of photocurrent.It is anticipated that this work will provide new emerging material for future design and preparation of a high-performance self-driven broadband photodetector.展开更多
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ...Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.展开更多
In order to improve the starved lubrication condition of rolling bearings,three kinds of textures,namely dimple,groove texture,and gradient groove texture,were developed on the guiding surface of thrust ball bearings ...In order to improve the starved lubrication condition of rolling bearings,three kinds of textures,namely dimple,groove texture,and gradient groove texture,were developed on the guiding surface of thrust ball bearings in this study.The results show that gradient groove texture has the one-way self-driving function of liquid droplets.The root mean square(RMS)value of vibration acceleration of gradient groove textured bearing(GGB)decreased by 49.1% and the kurtosis decreased by 24.6% compared with non-textured bearing(NB)due to the directional spreading effect of gradient groove textures on oil.The frequency domain analysis showed that the textures mainly suppressed the medium and high-frequency energy of bearing vibration,and the GGB was reduced the most with 65.3% and 48%,respectively.In addition,whether the grease is sufficiently sheared has a large impact on the oil guiding effect,and the friction torque of GGB could decrease by 10.5% compared with NB in the sufficiently sheared condition.Therefore,the gradient groove texture with oil self-driven effect on the guiding surface of rolling bearing can effectively improve the lubrication condition of the bearing and thus reduce the bearing vibration and friction torque,which has a promising application prospect.展开更多
Photodetectors based on two-dimensional(2D) materials have attracted considerable attention because of their unique properties. To further improve the performance of self-driven photodetectors based on van der Waals h...Photodetectors based on two-dimensional(2D) materials have attracted considerable attention because of their unique properties. To further improve the performance of self-driven photodetectors based on van der Waals heterojunctions, a conductive band minimum(CBM) matched self-driven SnS_(2)/WS_(2) van der Waals heterojunction photodetector based on a SiO2/Si substrate has been designed. The device exhibits a positive current at zero voltage under 365 nm laser illumination.This is attributed to the built-in electric field at the interface of the SnS_(2) and WS_(2) layer, which will separate and transport the photogenerated carriers, even at zero bias voltage. In addition, the Al_(2)O_(3) layer is covered by the surface of the SnS_(2)/WS_(2) photodetector to further improve the performance, because the Al_(2)O_(3) layer will introduce tensile stress on the surface of the 2D materials leading to a higher electron concentration and smaller effective mass of electrons in the films. This work provides an idea for the research of self-driven photodetectors based on a van der Waals heterogeneous junction.展开更多
文摘There exist interactions among pedestrians and between pedestrian and environment in evacuation. These interactions include attraction, repulsion and friction that play key roles in human evacuation behaviors, speed and efficiency. Most former evacuation models focus on the attraction force, while repulsion and friction are not well modeled. As a kind of multi-particle self-driven model, the social force model introduced in recent years can represent those three forces but with low simulation efficiency because it is a continuous model with complex rules. Discrete models such as the cellular automata model and the lattice gas model have simple rules and high simulation efficiency, but are not quite suitable for interactions’ simulation. In this paper, a new cellular automata model based on traditional models is introduced in which repulsion and friction are modeled quantitatively. It is indicated that the model can simulate some basic behaviors, e.g. arching and the “faster-is-slower” phenomenon, in evacuation as multi-particle self-driven models, but with high efficiency as the normal cellular automata model and the lattice gas model.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705201)the National Natural Science Foundation of China(No.U2032129).
文摘Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain.However,high-performance broadband self-driven photodetectors are still a significant challenge due to the complex fabrication processes,environmental toxicity,high production costs of traditional 3D semiconductor materials and sharply raised contact resistance,severe interfacial recombination of 2D materials and 2D/3D mixed dimension heterojunction.Here,1D p-Te/2D n-Bi_(2)Te_(3) heterojunctions are constructed by the simple and low-cost hydrothermal method.1D p-Te/2D n-Bi_(2)Te_(3) devices are applied in photoelectrochemical(PEC)photodetectors,with their high performance attributed to the good interfacial contacts reducing interface recombination.The device demonstrated a broad wavelength range(365–850 nm)with an Iph/Idark as high as 377.45.The R_(i),D^(*),and external quantum efficiency(EQE)values of the device were as high as 12.07 mA/W,5.87×10^(10) Jones,and 41.05%,respectively,which were significantly better than the performance of the prepared Bi_(2)Te_(3) and Te devices.A comparison of the freshly fabricated device and the device after 30 days showed that 1D p-Te/2D n-Bi_(2)Te_(3) had excellent stability with only 18.08%decay of photocurrent.It is anticipated that this work will provide new emerging material for future design and preparation of a high-performance self-driven broadband photodetector.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62074148,61875194,11727902,12204474,12304111,and 12304112)the Youth Innovation Promotion Association,Chinese Academy of Sciences (Grant No.2020225)+1 种基金Jilin Province Science Fund (Grant Nos.20220101053JC and 20210101145JC)Jilin Province Young and Middle-Aged Science and Technology Innovation Leaders and Team Project (Grant No.20220508153RC)。
文摘Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.
基金supported by National Key R&D Program of China(Grant No.2020YFB2006803)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.GK209907299001-006)+1 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY19E050014)Foundation of Zhejiang Provincial Education Department of China(Grant No.Y202044314).
文摘In order to improve the starved lubrication condition of rolling bearings,three kinds of textures,namely dimple,groove texture,and gradient groove texture,were developed on the guiding surface of thrust ball bearings in this study.The results show that gradient groove texture has the one-way self-driving function of liquid droplets.The root mean square(RMS)value of vibration acceleration of gradient groove textured bearing(GGB)decreased by 49.1% and the kurtosis decreased by 24.6% compared with non-textured bearing(NB)due to the directional spreading effect of gradient groove textures on oil.The frequency domain analysis showed that the textures mainly suppressed the medium and high-frequency energy of bearing vibration,and the GGB was reduced the most with 65.3% and 48%,respectively.In addition,whether the grease is sufficiently sheared has a large impact on the oil guiding effect,and the friction torque of GGB could decrease by 10.5% compared with NB in the sufficiently sheared condition.Therefore,the gradient groove texture with oil self-driven effect on the guiding surface of rolling bearing can effectively improve the lubrication condition of the bearing and thus reduce the bearing vibration and friction torque,which has a promising application prospect.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61974144,62004127,and 12074263)the Science and Technology Foundation of Shenzhen (Grant No.JSGG20191129114216474)the “National” Taipei University of Technology–Shenzhen University Joint Research Program,China (Grant No.2020009)。
文摘Photodetectors based on two-dimensional(2D) materials have attracted considerable attention because of their unique properties. To further improve the performance of self-driven photodetectors based on van der Waals heterojunctions, a conductive band minimum(CBM) matched self-driven SnS_(2)/WS_(2) van der Waals heterojunction photodetector based on a SiO2/Si substrate has been designed. The device exhibits a positive current at zero voltage under 365 nm laser illumination.This is attributed to the built-in electric field at the interface of the SnS_(2) and WS_(2) layer, which will separate and transport the photogenerated carriers, even at zero bias voltage. In addition, the Al_(2)O_(3) layer is covered by the surface of the SnS_(2)/WS_(2) photodetector to further improve the performance, because the Al_(2)O_(3) layer will introduce tensile stress on the surface of the 2D materials leading to a higher electron concentration and smaller effective mass of electrons in the films. This work provides an idea for the research of self-driven photodetectors based on a van der Waals heterogeneous junction.