AIM:To investigate anti-apoptotic effects of glycyrrhizic acid(GA) against fibrosis in carbon tetrachloride(CCl4)-induced liver injury and its contributing factors.METHODS:Liver fibrosis was induced by administration ...AIM:To investigate anti-apoptotic effects of glycyrrhizic acid(GA) against fibrosis in carbon tetrachloride(CCl4)-induced liver injury and its contributing factors.METHODS:Liver fibrosis was induced by administration of CCl4 for 8 wk.Pathological changes in the liver of rats were examined by hematoxylin-eosin staining.Collagen fibers were detected by Sirius red staining.Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of cleaved caspase-3,Bax,α-SMA,connective tissue growth factor(CTGF),matrix metalloproteinase(MMP) 2 and MMP9 proteins were evaluated by western blot analysis,and α-SMA m RNA,collagen type Ⅰ and Ⅲ m RNA were estimated by real-time PCR.RESULTS:Treatment with GA significantly improved the pathological changes in the liver and markedly decreased the positive area of Sirius red compared with rats in the CCl4-treated group.TUNEL assay showed that GA significantly reduced the number of TUNEL-positive cells compared with the CCl4-treated group.The expression levels of cleaved caspase-3,Bax,α-SMA,CTGF,MMP2 and MMP9 proteins,and α-SMA m RNA,collagen type Ⅰ and Ⅲ m RNA were also significantly reduced by GA compared with the CCl4-treated group(P < 0.05).CONCLUSION:GA treatment can ameliorate CCl4-induced liver fibrosis by inhibiting hepatocyte apoptosis and hepatic stellate cell activation.展开更多
Hepatic fibrosis is a wound healing response, involving pathways of inflammation and fibrogenesis. In response to various insults, such as alcohol, ischemia, viral agents, and medications or hepatotoxins, hepatocyte d...Hepatic fibrosis is a wound healing response, involving pathways of inflammation and fibrogenesis. In response to various insults, such as alcohol, ischemia, viral agents, and medications or hepatotoxins, hepatocyte damage will cause the release of cytokines and other soluble factors by Kupffer cells and other cell types in the liver. These factors lead to activation of hepatic stellate cells, which synthesize large amounts of extracellular matrix components. With chronic injury and fibrosis, liver architecture and metabolism are disrupted, eventually manifesting as cirrhosis and its complications. In addition to eliminating etiology, such as antiviral therapy and pharmacological intervention, it is encouraging that novel strategies are being developed to directly address hepatic injury and fibrosis at the subcellular and molecular levels. With improvement in understanding these mechanisms and pathways, key steps in injury, signaling, activation, and gene expression are being targeted by molecular modalities and other molecular or gene therapy approaches. This article intends to provide an update in terms of the current status of molecular therapy for hepatic injury and fibrosis and how far we are from clinical utilization of these new therapeutic modalities.展开更多
AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth fact...AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases. METHODS: MSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining. RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20:1=1.16 μg/L (t = 2.884, P〈0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P〈0.01). Albumin increased significantly on d 16 (t = 6.68, P〈0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P〈0.01). Urea (4.72±1.03 μmol/L) was detected on d 20 (t = 4.272, P〈0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P〈0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of F-GF-4 and HGF. HUCB derived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.展开更多
AIM: To investigate the mechanism and regulation of differentiation from bone marrow mesenchymal stem cells (MSCs) into hepatocytes and to find a new source of celltypes for therapies of hepatic diseases. METHODS: MSC...AIM: To investigate the mechanism and regulation of differentiation from bone marrow mesenchymal stem cells (MSCs) into hepatocytes and to find a new source of celltypes for therapies of hepatic diseases. METHODS: MSCs were isolated by combining gradient density centrifugation with plastic adherence. The cells were cultured in osteogenic or adipogenic differentiation medium and determined by histochemical staining. MSCs were plated in plastic culture flasks that were not coated with components of extracellular matrix (ECM). When MSCs reached 70% confluence, they were cultured in low glucose Dulbecco's modified Eagle's medium supplemented with 10 mL/L fetal bovine serum, 20 ng/mL hepatocyte growth factor (HGF) and 10 ng/mL fibroblast growth factor-4 (FGF-4). The medium was changed every 3 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Glycogen store of hepatocytes was determined by periodic acid-Schiff staining.RESULTS: By combining gradient density centrifugation with plastic adherence, we isolated a homogeneous population of cells from rat bone marrow and differentiated them into osteocytes and adipocytes. When MSCs were cultured withFGF-4 and HGF, approximately 56.6% of cells became smallround and epithelioid on d 24 by morphology. Compared with the control, levels of AFP increased significantly from d 12 to 15.5±1.4 μg/L (t = 2.31, P<0.05) in MSCs cultured with FGF-4and HGF, and were higher (46.2±1.5 μg/L)ond 21 (t = 41.926, P<0.01), then decreased to 24.8±2.2 μg/L on d 24 (t = 10.345, P<0.01). Albumin increased significantly on d 21 (t= 3.325, P<0.01) to 1.4±0.2 μg/mL,and to 2.1±0.7 μg/mL on d 24 (t= 3.646, P<0.01). Urea(2.3±0.4 mmol/L) was first detected on d 21 (t = 6.739, P<0.01), and continued to increase to 2.6±0.9 mmol/Lon d 24 (t= 4.753, P<0.01). Glycogen storage was first seen on d 21.CONCLUSION: The method combining gradient density centrifugation with plastic adherence can isolate MSCs. Rat MSCs may be differentiated into hepatocytes by FGF-4 and HGF. Cyt展开更多
INTRODUCTIONLiver fibrosis or cirrhosis is a common progressively pathological lesion of chronic liver diseases in response to various liver-damaging factors. The main mechanisms of fibrotic or cirrhotic initiation an...INTRODUCTIONLiver fibrosis or cirrhosis is a common progressively pathological lesion of chronic liver diseases in response to various liver-damaging factors. The main mechanisms of fibrotic or cirrhotic initiation and progression at the level of cellular and molecular events have been elucidated in the past two decades[1,2].展开更多
AIM: To study the effects of obstructive jaundice on liver regeneration after partial hepatectomy. METHODS: Hepatocyte growth factor (HGF), its receptor, c-Met, vascular endothelial growth factor (VEGF) and tran...AIM: To study the effects of obstructive jaundice on liver regeneration after partial hepatectomy. METHODS: Hepatocyte growth factor (HGF), its receptor, c-Met, vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) mRNA expression in both liver tissue and isolated liver cells were investigated after biliary obstruction (BO) by quantitative reverse-transcription polymerase chain reaction (RT-PCR) using a LightCycler. Immunohistochemical staining for desmin and e-smooth muscle actin (α-SNA) was also studied. Regenerating liver weight and proliferating cell nuclear antigen (PCNA) labeling index, and growth factor expression were then evaluated after 70% hepatectomy with concomitant internal bUiary drainage in BO rats or sham-operated rats. RESULTS: Hepatic TGF-β1 mRNA levels increased significantly 14 days after BO, and further increased with duration of cholestasis. Meanwhile, HGF and VEGF tended to increase, but was not significant. In cell isolates, TGF-β1 mRNA was found mainly in the hepatic stellate cell (HSC) fraction. Immunohistochemical studies revealed an increased number of HSCs (desmin-positive cells) and activated HSCs (α-SMA-positive cells) in portal areas after BO. In a hepatectomy model, liver regeneration was delayed in BO rats, as compared to sham-operated rats. TGF-β1 mRNA was significantly up-regulated up to 48 h after hepatectomy, and the earlier HGF mRNA peak was lost in BO rats. CONCLUSION: BO induces HSCs proliferation and activation, leading to up-regulation of TGF-β1 mRNA and suppression of HGF mRNA in livers. These altered expression patterns may be strongly involved in delayed liver regeneration after hepatectomy with obstructive jaundice.展开更多
AIM:To investigate the role of hepatocyte growth factor(HGF) in cholangiocarcinoma(CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS:Effects of HGF on cell invasion and motility wer...AIM:To investigate the role of hepatocyte growth factor(HGF) in cholangiocarcinoma(CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS:Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines,HuCCA-1 and KKU-M213,using Transwell in vitro assay.Levels of proteins of interest and their phosphorylated forms were determined by Western blotting.Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography. RESULTS:Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line.HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization,but did not affect the levels of secreted matrix metalloproteinase(MMP) -2,MMP-9 andurokinase plasminogen activator,key matrix degrading enzymes involved in cell invasion.Concomitantly,HGF stimulated Akt and extracellular signal-regulated kinase(ERK) 1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines.Inhibition of the phosphoinositide 3-kinase(PI3K) /Akt pathway by the PI3K inhibitor,LY294002,markedly suppressed HGFstimulated invasion of both CCA cell lines,and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells. CONCLUSION:These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.展开更多
基金Medical and Health Science and Technology Planning Project of Zhejiang Province in 2012,China,Grant NO.2012RCB007
文摘AIM:To investigate anti-apoptotic effects of glycyrrhizic acid(GA) against fibrosis in carbon tetrachloride(CCl4)-induced liver injury and its contributing factors.METHODS:Liver fibrosis was induced by administration of CCl4 for 8 wk.Pathological changes in the liver of rats were examined by hematoxylin-eosin staining.Collagen fibers were detected by Sirius red staining.Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of cleaved caspase-3,Bax,α-SMA,connective tissue growth factor(CTGF),matrix metalloproteinase(MMP) 2 and MMP9 proteins were evaluated by western blot analysis,and α-SMA m RNA,collagen type Ⅰ and Ⅲ m RNA were estimated by real-time PCR.RESULTS:Treatment with GA significantly improved the pathological changes in the liver and markedly decreased the positive area of Sirius red compared with rats in the CCl4-treated group.TUNEL assay showed that GA significantly reduced the number of TUNEL-positive cells compared with the CCl4-treated group.The expression levels of cleaved caspase-3,Bax,α-SMA,CTGF,MMP2 and MMP9 proteins,and α-SMA m RNA,collagen type Ⅰ and Ⅲ m RNA were also significantly reduced by GA compared with the CCl4-treated group(P < 0.05).CONCLUSION:GA treatment can ameliorate CCl4-induced liver fibrosis by inhibiting hepatocyte apoptosis and hepatic stellate cell activation.
基金Supported by NIH grant(DK069939)the Liver Scholar Award by the American Liver Foundation to J.W.
文摘Hepatic fibrosis is a wound healing response, involving pathways of inflammation and fibrogenesis. In response to various insults, such as alcohol, ischemia, viral agents, and medications or hepatotoxins, hepatocyte damage will cause the release of cytokines and other soluble factors by Kupffer cells and other cell types in the liver. These factors lead to activation of hepatic stellate cells, which synthesize large amounts of extracellular matrix components. With chronic injury and fibrosis, liver architecture and metabolism are disrupted, eventually manifesting as cirrhosis and its complications. In addition to eliminating etiology, such as antiviral therapy and pharmacological intervention, it is encouraging that novel strategies are being developed to directly address hepatic injury and fibrosis at the subcellular and molecular levels. With improvement in understanding these mechanisms and pathways, key steps in injury, signaling, activation, and gene expression are being targeted by molecular modalities and other molecular or gene therapy approaches. This article intends to provide an update in terms of the current status of molecular therapy for hepatic injury and fibrosis and how far we are from clinical utilization of these new therapeutic modalities.
基金Supported by National Natural Science Foundation of China, No.30470633Doctoral Foundation of Xi'an Jiaotong University,No.DFXJTU2002-16
文摘AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases. METHODS: MSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining. RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20:1=1.16 μg/L (t = 2.884, P〈0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P〈0.01). Albumin increased significantly on d 16 (t = 6.68, P〈0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P〈0.01). Urea (4.72±1.03 μmol/L) was detected on d 20 (t = 4.272, P〈0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P〈0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of F-GF-4 and HGF. HUCB derived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.
基金Supported by the National Natural Science Foundation of China, No. 30270554the Doctoral Foundation of Xi'an Jiaotong University, No. DFXJTU2002-16
文摘AIM: To investigate the mechanism and regulation of differentiation from bone marrow mesenchymal stem cells (MSCs) into hepatocytes and to find a new source of celltypes for therapies of hepatic diseases. METHODS: MSCs were isolated by combining gradient density centrifugation with plastic adherence. The cells were cultured in osteogenic or adipogenic differentiation medium and determined by histochemical staining. MSCs were plated in plastic culture flasks that were not coated with components of extracellular matrix (ECM). When MSCs reached 70% confluence, they were cultured in low glucose Dulbecco's modified Eagle's medium supplemented with 10 mL/L fetal bovine serum, 20 ng/mL hepatocyte growth factor (HGF) and 10 ng/mL fibroblast growth factor-4 (FGF-4). The medium was changed every 3 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Glycogen store of hepatocytes was determined by periodic acid-Schiff staining.RESULTS: By combining gradient density centrifugation with plastic adherence, we isolated a homogeneous population of cells from rat bone marrow and differentiated them into osteocytes and adipocytes. When MSCs were cultured withFGF-4 and HGF, approximately 56.6% of cells became smallround and epithelioid on d 24 by morphology. Compared with the control, levels of AFP increased significantly from d 12 to 15.5±1.4 μg/L (t = 2.31, P<0.05) in MSCs cultured with FGF-4and HGF, and were higher (46.2±1.5 μg/L)ond 21 (t = 41.926, P<0.01), then decreased to 24.8±2.2 μg/L on d 24 (t = 10.345, P<0.01). Albumin increased significantly on d 21 (t= 3.325, P<0.01) to 1.4±0.2 μg/mL,and to 2.1±0.7 μg/mL on d 24 (t= 3.646, P<0.01). Urea(2.3±0.4 mmol/L) was first detected on d 21 (t = 6.739, P<0.01), and continued to increase to 2.6±0.9 mmol/Lon d 24 (t= 4.753, P<0.01). Glycogen storage was first seen on d 21.CONCLUSION: The method combining gradient density centrifugation with plastic adherence can isolate MSCs. Rat MSCs may be differentiated into hepatocytes by FGF-4 and HGF. Cyt
文摘INTRODUCTIONLiver fibrosis or cirrhosis is a common progressively pathological lesion of chronic liver diseases in response to various liver-damaging factors. The main mechanisms of fibrotic or cirrhotic initiation and progression at the level of cellular and molecular events have been elucidated in the past two decades[1,2].
文摘AIM: To study the effects of obstructive jaundice on liver regeneration after partial hepatectomy. METHODS: Hepatocyte growth factor (HGF), its receptor, c-Met, vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) mRNA expression in both liver tissue and isolated liver cells were investigated after biliary obstruction (BO) by quantitative reverse-transcription polymerase chain reaction (RT-PCR) using a LightCycler. Immunohistochemical staining for desmin and e-smooth muscle actin (α-SNA) was also studied. Regenerating liver weight and proliferating cell nuclear antigen (PCNA) labeling index, and growth factor expression were then evaluated after 70% hepatectomy with concomitant internal bUiary drainage in BO rats or sham-operated rats. RESULTS: Hepatic TGF-β1 mRNA levels increased significantly 14 days after BO, and further increased with duration of cholestasis. Meanwhile, HGF and VEGF tended to increase, but was not significant. In cell isolates, TGF-β1 mRNA was found mainly in the hepatic stellate cell (HSC) fraction. Immunohistochemical studies revealed an increased number of HSCs (desmin-positive cells) and activated HSCs (α-SMA-positive cells) in portal areas after BO. In a hepatectomy model, liver regeneration was delayed in BO rats, as compared to sham-operated rats. TGF-β1 mRNA was significantly up-regulated up to 48 h after hepatectomy, and the earlier HGF mRNA peak was lost in BO rats. CONCLUSION: BO induces HSCs proliferation and activation, leading to up-regulation of TGF-β1 mRNA and suppression of HGF mRNA in livers. These altered expression patterns may be strongly involved in delayed liver regeneration after hepatectomy with obstructive jaundice.
基金Supported by Mahidol University,Thailand and Thailand Research Fund(Suthiphongchai T)Strategic Consortia for Capacity Building of University Faculties and Staff Scholarship,Commission on Higher Education,Ministry of Education,Thailand(Menakongka A)
文摘AIM:To investigate the role of hepatocyte growth factor(HGF) in cholangiocarcinoma(CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS:Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines,HuCCA-1 and KKU-M213,using Transwell in vitro assay.Levels of proteins of interest and their phosphorylated forms were determined by Western blotting.Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography. RESULTS:Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line.HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization,but did not affect the levels of secreted matrix metalloproteinase(MMP) -2,MMP-9 andurokinase plasminogen activator,key matrix degrading enzymes involved in cell invasion.Concomitantly,HGF stimulated Akt and extracellular signal-regulated kinase(ERK) 1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines.Inhibition of the phosphoinositide 3-kinase(PI3K) /Akt pathway by the PI3K inhibitor,LY294002,markedly suppressed HGFstimulated invasion of both CCA cell lines,and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells. CONCLUSION:These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.