Background Myocardial infarction results in tissue necrosis, leading to cell loss and ultimately to cardiac failure. Implantation of skeletal muscle satellite cells into the scar area may compensate for the cell loss ...Background Myocardial infarction results in tissue necrosis, leading to cell loss and ultimately to cardiac failure. Implantation of skeletal muscle satellite cells into the scar area may compensate for the cell loss and provides a new strategy for infarct therapy. Vascular endothelial growth factor (VEGF) is a promising reagent for inducing myocardial angiogenesis. Skeletal myoblast transplantation has been shown to improve cardiac function in chronic heart failure models by regenerating muscle. We hypothesized that VEGF expression and vascular regeneration increased in infarcted myocardium by skeletal muscle satellite cells, which can promote vascular producing and improve survival environment in infarcted myocardium. Methods The skeletal muscle satellite cells were implanted into the infarcted myocardium in a model through ligated left anterior artery in Louis Inbrad Strain rat. Specimens were got for identifying the expression of VEGF and the density of vascular by immunochemical method at two weeks after implantation. Results The proliferation and differentiation of the skeletal muscle satellite cell was very well. The expression of VEGF was higher in the implanted group (146.83±2.49) than that in the control group (134.26±6.84) (P〈0.05). The vascular density in the implanted group (13,00± 1.51) was also higher than that in the control (10.68 ± 1.79) (P〈0.05). Conclusion The implanted satellite cell could excrete growth factor that would induce angiogenesis and improve cell survival environment in infarcted myocardium.展开更多
Injury to peripheral nerves can lead to neuropathic pain, along with well-studied effects on sensory neurons, including hyperexcitability, abnormal spontaneous activity, and neuroinflammation in the sensory ganglia. N...Injury to peripheral nerves can lead to neuropathic pain, along with well-studied effects on sensory neurons, including hyperexcitability, abnormal spontaneous activity, and neuroinflammation in the sensory ganglia. Neuropathic pain can be enhanced by sympathetic activity. Peripheral nerve injury may also damage sympathetic axons or expose them to an inflammatory environment. In this study, we examined the lumbar sympathetic ganglion responses to two rat pain models: ligation of the L5 spinal nerve, and local inflammation of the L5 dorsal root ganglion (DRG), which does not involve axotomy. Both models resulted in neuroinflammatory changes in the sympathetic ganglia, as indicated by macrophage responses, satellite glia activation, and increased numbers of T cells, along with very modest increases in sympathetic neuron excitability (but not spontaneous activity) measured in ex vivo recordings. The spinal nerve ligation model generally caused larger responses than DRG inflammation. Plasticity of the sympathetic system should be recognized in studies of sympathetic effects on pain.展开更多
Purpose: The objective of the present study was to determine whether a denervated muscle extract(DmEx) could stimulate satellite cell response in denervated muscle.Methods: Wistar rats were divided into 4 groups: norm...Purpose: The objective of the present study was to determine whether a denervated muscle extract(DmEx) could stimulate satellite cell response in denervated muscle.Methods: Wistar rats were divided into 4 groups: normal rats, normal rats treated with DmEx, denervated rats, and denervated rats treated with DmEx. The soleus muscles were examined using immunohistochemical techniques for proliferating cell nuclear antigen, desmin, and myogenic differentiation antigen(MyoD), and electron microscopy was used for analysis of the satellite cells.Results: The results indicate that while denervation causes activation of satellite cells, DmEx also induces myogenic differentiation of cells localized in the interstitial space and the formation of new muscle fibers. Although DmEx had a similar effect in nature on innervated and denervated muscles, this response was of greater magnitude in denervated vs. intact muscles.Conclusion: Our study shows that treatment of denervated rats with DmEx potentiates the myogenic response in atrophic denervated muscles.展开更多
目的:对T细胞淋巴瘤(T-cell lymphoma,TCL)6号染色体上6个微卫星多态标志物进行等位基因杂合性缺失(loss of heterozygosity,LOH)分析,以明确该区域是否存在与人类TCL发生发展相关的抑癌基因。方法:选取6号染色体上6个微卫星多态标志D6S...目的:对T细胞淋巴瘤(T-cell lymphoma,TCL)6号染色体上6个微卫星多态标志物进行等位基因杂合性缺失(loss of heterozygosity,LOH)分析,以明确该区域是否存在与人类TCL发生发展相关的抑癌基因。方法:选取6号染色体上6个微卫星多态标志D6S251、D6S275、D6S287、D6S267、D6S262、D6S264,采用石蜡组织基因组DNA抽提、PCR扩增,变性聚丙烯酰胺凝胶垂直电泳、银染法分别检测了42例TCL中肿瘤组织与相应正常组织基因组DNA的LOH状况。结果:42例TCL中13例(13/42,30.95%)至少在1个位点出现LOH,以D6D262最高(10.3%),其次为D6S287(10.0%)和D6S267(7.3%)。而不同临床病理分型的TCL其LOH发生差异无统计学意义(P>0.05)。结论:在6号染色体上的6个微卫星标志中D6S287、D6S262和D6S267周围的6q21-6q23压域发生杂合性缺失率较高,位于6q21区编码Cyclin C的基因可能是此区与TCL发生发展相关的候选抑癌基因;尤其是6q21-6q22.1区域可能存在与TCL相关的抑癌基因,可能与TCL的发生发展有关。展开更多
This paper proposes several quantitative characteristics to study convective systems using observations from Doppler weather radars and geostationary satellites. Specifically, in order to measure the convective intens...This paper proposes several quantitative characteristics to study convective systems using observations from Doppler weather radars and geostationary satellites. Specifically, in order to measure the convective intensity of each system, a new index, named the "Convective Intensity Ratio" (CIR), is defined as the ratio between the area of strong radar echoes at the upper level and the size of the convective cell itself. Based on these quantitative characteristics, the evolution of convective cells, surface rainfall intensity, rainfall area and convectively generated anvil clouds can be studied, and the relationships between them can also be analyzed. After testing nine meso-β-scale convective systems over North China during 2006–2007, the results were as follows: (1) the CIR was highly correlated with surface rainfall intensity, and the correlation reached a maximum when the CIR led rainfall intensity by 6–30 mins. The maximum CIR could be at most ~30 mins before the maximum rainfall intensity. (2) Convective systems with larger maximum CIRs usually had colder cloud-tops. (3) The maximum area of anvil cloud appeared 0.5–1.5 h after rainfall intensity began to weaken. The maximum area of anvil cloud and the time lag between maximum rainfall intensity and the maximum area of anvil cloud both increased with the CIR.展开更多
ECFD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, i...ECFD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, in which erroneous cells caused by satellite channel and the following cells that belong to the same PDU (protocol data Unit) are discarded, concerns non-real-time data services that use higher layer protocol for retransmission. Based on EPD (early packet drop) policy, mathematical models are established with and without ECTD. The numerical results show that ECTD would optimize buffer management and improve effective throughput (goodput), and the increment of goodput is relative to the CER (cell error ratio) and the PDU length. The higher their values are, the greater the increment. For example, when the average PDU length values are 30 and 90, the improvement of goodput are respectively about 4% and 10%.展开更多
Analysis of solar-cell array panel (SAP) data from the Arase satellite orbiting in the inner magnetosphere showed a clear degradation of solar cells that could be attributed to trapped protons with energies greater th...Analysis of solar-cell array panel (SAP) data from the Arase satellite orbiting in the inner magnetosphere showed a clear degradation of solar cells that could be attributed to trapped protons with energies greater than 6 MeV. Proton fluence was determined based on variations in the open-circuit voltage (Voc) of the solar cells, which we compared with that expected based on various distribution models (AP8MAX, AP9 mean and CRRESPRO quiet) of trapped protons. We found a general agreement, confirming the major contribution of trapped protons to the degradation, as well as a slight difference in the fluence expected based on the model calculations. To minimize this difference, we slightly modified the models, and found that concentrating the energetic protons on the magnetic equator provided a better agreement. Our results indicate that >6 MeV protons also has the equatorial concentration as reported for >18 MeV protons from the Van Allen Probes observation, and are interpreted as two components of the trapped protons, i.e., those of solar energetic particle (SEP) origin have an anisotropic pitch-angle distribution and are confined near the magnetic equator.展开更多
Skeletal muscle plays an essential role in generating the mechanical force necessary to support the movement of our body and daily exercise. Compared with cardiac and smooth muscle, in mammals, skeletal muscle exhibit...Skeletal muscle plays an essential role in generating the mechanical force necessary to support the movement of our body and daily exercise. Compared with cardiac and smooth muscle, in mammals, skeletal muscle exhibits remarkable regenerative capacity in response to damage. Muscle stem cells, also known as satellite cells, directly contribute to regeneration. Here, we review primary and secondary myogenesis processes with a focus on muscle stem cells, as well as the function and regulation of muscle stem cells in adult muscle regeneration in mammals.展开更多
Peripheral neuropathy is a condition where damage resulting from mechanical or pathological mechanisms is inflicted on nerves within the peripheral nervous system (PNS). Physical injury is the most common cause and ...Peripheral neuropathy is a condition where damage resulting from mechanical or pathological mechanisms is inflicted on nerves within the peripheral nervous system (PNS). Physical injury is the most common cause and may result in nerves being partially or completely severed, crushed, compressed or stretched. Other causes include metabolic or endocrine disorders, with e.g.,展开更多
基金This study was supported by a grant from the Natural Science Foundation of Hubei Province (No. 2004AB135).
文摘Background Myocardial infarction results in tissue necrosis, leading to cell loss and ultimately to cardiac failure. Implantation of skeletal muscle satellite cells into the scar area may compensate for the cell loss and provides a new strategy for infarct therapy. Vascular endothelial growth factor (VEGF) is a promising reagent for inducing myocardial angiogenesis. Skeletal myoblast transplantation has been shown to improve cardiac function in chronic heart failure models by regenerating muscle. We hypothesized that VEGF expression and vascular regeneration increased in infarcted myocardium by skeletal muscle satellite cells, which can promote vascular producing and improve survival environment in infarcted myocardium. Methods The skeletal muscle satellite cells were implanted into the infarcted myocardium in a model through ligated left anterior artery in Louis Inbrad Strain rat. Specimens were got for identifying the expression of VEGF and the density of vascular by immunochemical method at two weeks after implantation. Results The proliferation and differentiation of the skeletal muscle satellite cell was very well. The expression of VEGF was higher in the implanted group (146.83±2.49) than that in the control group (134.26±6.84) (P〈0.05). The vascular density in the implanted group (13,00± 1.51) was also higher than that in the control (10.68 ± 1.79) (P〈0.05). Conclusion The implanted satellite cell could excrete growth factor that would induce angiogenesis and improve cell survival environment in infarcted myocardium.
基金supported in part by National Institutes of Health Grants NS045594,NS055860,and AR068989 to J.M.Z.
文摘Injury to peripheral nerves can lead to neuropathic pain, along with well-studied effects on sensory neurons, including hyperexcitability, abnormal spontaneous activity, and neuroinflammation in the sensory ganglia. Neuropathic pain can be enhanced by sympathetic activity. Peripheral nerve injury may also damage sympathetic axons or expose them to an inflammatory environment. In this study, we examined the lumbar sympathetic ganglion responses to two rat pain models: ligation of the L5 spinal nerve, and local inflammation of the L5 dorsal root ganglion (DRG), which does not involve axotomy. Both models resulted in neuroinflammatory changes in the sympathetic ganglia, as indicated by macrophage responses, satellite glia activation, and increased numbers of T cells, along with very modest increases in sympathetic neuron excitability (but not spontaneous activity) measured in ex vivo recordings. The spinal nerve ligation model generally caused larger responses than DRG inflammation. Plasticity of the sympathetic system should be recognized in studies of sympathetic effects on pain.
文摘Purpose: The objective of the present study was to determine whether a denervated muscle extract(DmEx) could stimulate satellite cell response in denervated muscle.Methods: Wistar rats were divided into 4 groups: normal rats, normal rats treated with DmEx, denervated rats, and denervated rats treated with DmEx. The soleus muscles were examined using immunohistochemical techniques for proliferating cell nuclear antigen, desmin, and myogenic differentiation antigen(MyoD), and electron microscopy was used for analysis of the satellite cells.Results: The results indicate that while denervation causes activation of satellite cells, DmEx also induces myogenic differentiation of cells localized in the interstitial space and the formation of new muscle fibers. Although DmEx had a similar effect in nature on innervated and denervated muscles, this response was of greater magnitude in denervated vs. intact muscles.Conclusion: Our study shows that treatment of denervated rats with DmEx potentiates the myogenic response in atrophic denervated muscles.
文摘目的:对T细胞淋巴瘤(T-cell lymphoma,TCL)6号染色体上6个微卫星多态标志物进行等位基因杂合性缺失(loss of heterozygosity,LOH)分析,以明确该区域是否存在与人类TCL发生发展相关的抑癌基因。方法:选取6号染色体上6个微卫星多态标志D6S251、D6S275、D6S287、D6S267、D6S262、D6S264,采用石蜡组织基因组DNA抽提、PCR扩增,变性聚丙烯酰胺凝胶垂直电泳、银染法分别检测了42例TCL中肿瘤组织与相应正常组织基因组DNA的LOH状况。结果:42例TCL中13例(13/42,30.95%)至少在1个位点出现LOH,以D6D262最高(10.3%),其次为D6S287(10.0%)和D6S267(7.3%)。而不同临床病理分型的TCL其LOH发生差异无统计学意义(P>0.05)。结论:在6号染色体上的6个微卫星标志中D6S287、D6S262和D6S267周围的6q21-6q23压域发生杂合性缺失率较高,位于6q21区编码Cyclin C的基因可能是此区与TCL发生发展相关的候选抑癌基因;尤其是6q21-6q22.1区域可能存在与TCL相关的抑癌基因,可能与TCL的发生发展有关。
基金supported bythe National High Technology Research and Development Program of China (Grant No. 2006AA122106)the Na-tional Natural Science Foundation of China (Grant No.40875019) the Foundation of Basic Scientific Researchand Operation of Chinese Academy of Meteorological Sci-ence (Grant No. 2007Y004)
文摘This paper proposes several quantitative characteristics to study convective systems using observations from Doppler weather radars and geostationary satellites. Specifically, in order to measure the convective intensity of each system, a new index, named the "Convective Intensity Ratio" (CIR), is defined as the ratio between the area of strong radar echoes at the upper level and the size of the convective cell itself. Based on these quantitative characteristics, the evolution of convective cells, surface rainfall intensity, rainfall area and convectively generated anvil clouds can be studied, and the relationships between them can also be analyzed. After testing nine meso-β-scale convective systems over North China during 2006–2007, the results were as follows: (1) the CIR was highly correlated with surface rainfall intensity, and the correlation reached a maximum when the CIR led rainfall intensity by 6–30 mins. The maximum CIR could be at most ~30 mins before the maximum rainfall intensity. (2) Convective systems with larger maximum CIRs usually had colder cloud-tops. (3) The maximum area of anvil cloud appeared 0.5–1.5 h after rainfall intensity began to weaken. The maximum area of anvil cloud and the time lag between maximum rainfall intensity and the maximum area of anvil cloud both increased with the CIR.
文摘ECFD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, in which erroneous cells caused by satellite channel and the following cells that belong to the same PDU (protocol data Unit) are discarded, concerns non-real-time data services that use higher layer protocol for retransmission. Based on EPD (early packet drop) policy, mathematical models are established with and without ECTD. The numerical results show that ECTD would optimize buffer management and improve effective throughput (goodput), and the increment of goodput is relative to the CER (cell error ratio) and the PDU length. The higher their values are, the greater the increment. For example, when the average PDU length values are 30 and 90, the improvement of goodput are respectively about 4% and 10%.
文摘Analysis of solar-cell array panel (SAP) data from the Arase satellite orbiting in the inner magnetosphere showed a clear degradation of solar cells that could be attributed to trapped protons with energies greater than 6 MeV. Proton fluence was determined based on variations in the open-circuit voltage (Voc) of the solar cells, which we compared with that expected based on various distribution models (AP8MAX, AP9 mean and CRRESPRO quiet) of trapped protons. We found a general agreement, confirming the major contribution of trapped protons to the degradation, as well as a slight difference in the fluence expected based on the model calculations. To minimize this difference, we slightly modified the models, and found that concentrating the energetic protons on the magnetic equator provided a better agreement. Our results indicate that >6 MeV protons also has the equatorial concentration as reported for >18 MeV protons from the Van Allen Probes observation, and are interpreted as two components of the trapped protons, i.e., those of solar energetic particle (SEP) origin have an anisotropic pitch-angle distribution and are confined near the magnetic equator.
文摘Skeletal muscle plays an essential role in generating the mechanical force necessary to support the movement of our body and daily exercise. Compared with cardiac and smooth muscle, in mammals, skeletal muscle exhibits remarkable regenerative capacity in response to damage. Muscle stem cells, also known as satellite cells, directly contribute to regeneration. Here, we review primary and secondary myogenesis processes with a focus on muscle stem cells, as well as the function and regulation of muscle stem cells in adult muscle regeneration in mammals.
文摘Peripheral neuropathy is a condition where damage resulting from mechanical or pathological mechanisms is inflicted on nerves within the peripheral nervous system (PNS). Physical injury is the most common cause and may result in nerves being partially or completely severed, crushed, compressed or stretched. Other causes include metabolic or endocrine disorders, with e.g.,