The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and...The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and FPAR data over Northeast China, the correlations between corn-canopy FPAR and hyperspectral reflectance were analyzed, and the FPAR estimation performances using vegetation index (VI) and neural network (NN) methods with different two-band-combination hyperspectral reflectance were investigated. The results indicated that the corn-canopy FPAR retained almost a constant value in an entire day. The negative correlations between FPAR and visible and shortwave infrared reflectance (SWIR) bands are stronger than the positive correlations between FPAR and near-infrared band re- flectance (NIR). For the six VIs, the normalized difference vegetation index (NDVI) and simple ratio (SR) performed best for estimating corn FPAR (the maximum R2 of 0.8849 and 0.8852, respectively). However, the NN method esti- mated results (the maximum Rz is 0.9417) were obviously better than all of the VIs. For NN method, the two-band combinations showing the best corn FPAR estimation performances were from the NIR and visible bands; for VIs, however, they were from the SWIR and NIR bands. As for both the methods, the SWIR band performed exceptionally well for corn FPAR estimation. This may be attributable to the fact that the reflectance of the SWIR band were strongly controlled by leaf water content, which is a key component of corn photosynthesis and greatly affects the absorption of photosynthetically active radiation (APAR), and makes further impact on corn-canopy FPAR.展开更多
The problem of finding stabilizing controllers for switched systems is an area of much research interest as conventional concepts from continuous time and discrete event dynamics do not hold true for these systems.Man...The problem of finding stabilizing controllers for switched systems is an area of much research interest as conventional concepts from continuous time and discrete event dynamics do not hold true for these systems.Many solutions have been proposed,most of which are based on finding the existence of a common Lyapunov function(CLF) or a multiple Lyapunov function(MLF) where the key is to formulate the problem into a set of linear matrix inequalities(LMIs).An alternative method for finding the existence of a CLF by solving two sets of linear inequalities(LIs) has previously been presented.This method is seen to be less computationally taxing compared to methods based on solving LMIs.To substantiate this,the computational ability of three numerical computational solvers,LMI solver,cvx,and Yalmip,as well as the symbolic computational program Maple were tested.A specific switched system comprising four second-order subsystems was used as a test case.From the obtained solutions,the validity of the controllers and the corresponding CLF was verified.It was found that all tested solvers were able to correctly solve the LIs.The issue of rounding-off error in numerical computation based software is discussed in detail.The test revealed that the guarantee of stability became uncertain when the rounding off was at a different decimal precision.The use of different external solvers led to the same conclusion in terms of the stability of switched systems.As a result,a shift from using a conventional numerical computation based program to using computer algebra is suggested.展开更多
基金Under the auspices of National Key Research Program of Global Change Research (No.2010CB951302)National Natural Science Fundation of China (No.40771146)China Postdoctoral Science Foundation Funded Project (No.07Z7601MZ1)
文摘The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and FPAR data over Northeast China, the correlations between corn-canopy FPAR and hyperspectral reflectance were analyzed, and the FPAR estimation performances using vegetation index (VI) and neural network (NN) methods with different two-band-combination hyperspectral reflectance were investigated. The results indicated that the corn-canopy FPAR retained almost a constant value in an entire day. The negative correlations between FPAR and visible and shortwave infrared reflectance (SWIR) bands are stronger than the positive correlations between FPAR and near-infrared band re- flectance (NIR). For the six VIs, the normalized difference vegetation index (NDVI) and simple ratio (SR) performed best for estimating corn FPAR (the maximum R2 of 0.8849 and 0.8852, respectively). However, the NN method esti- mated results (the maximum Rz is 0.9417) were obviously better than all of the VIs. For NN method, the two-band combinations showing the best corn FPAR estimation performances were from the NIR and visible bands; for VIs, however, they were from the SWIR and NIR bands. As for both the methods, the SWIR band performed exceptionally well for corn FPAR estimation. This may be attributable to the fact that the reflectance of the SWIR band were strongly controlled by leaf water content, which is a key component of corn photosynthesis and greatly affects the absorption of photosynthetically active radiation (APAR), and makes further impact on corn-canopy FPAR.
文摘The problem of finding stabilizing controllers for switched systems is an area of much research interest as conventional concepts from continuous time and discrete event dynamics do not hold true for these systems.Many solutions have been proposed,most of which are based on finding the existence of a common Lyapunov function(CLF) or a multiple Lyapunov function(MLF) where the key is to formulate the problem into a set of linear matrix inequalities(LMIs).An alternative method for finding the existence of a CLF by solving two sets of linear inequalities(LIs) has previously been presented.This method is seen to be less computationally taxing compared to methods based on solving LMIs.To substantiate this,the computational ability of three numerical computational solvers,LMI solver,cvx,and Yalmip,as well as the symbolic computational program Maple were tested.A specific switched system comprising four second-order subsystems was used as a test case.From the obtained solutions,the validity of the controllers and the corresponding CLF was verified.It was found that all tested solvers were able to correctly solve the LIs.The issue of rounding-off error in numerical computation based software is discussed in detail.The test revealed that the guarantee of stability became uncertain when the rounding off was at a different decimal precision.The use of different external solvers led to the same conclusion in terms of the stability of switched systems.As a result,a shift from using a conventional numerical computation based program to using computer algebra is suggested.