研制了一种基于肖特基变容二极管的0.17 THz二倍频器,该器件为0.34 THz无线通信系统收发前端提供了低相噪、低杂散的本振信号。倍频器结构基于波导腔体石英基片微带电路实现,其核心器件是多结正向并联的肖特基变容二极管。文中采用结参...研制了一种基于肖特基变容二极管的0.17 THz二倍频器,该器件为0.34 THz无线通信系统收发前端提供了低相噪、低杂散的本振信号。倍频器结构基于波导腔体石英基片微带电路实现,其核心器件是多结正向并联的肖特基变容二极管。文中采用结参数模型和三维电磁模型相结合的方式对二极管进行建模,通过两种电路匹配方式实现了0.17 THz二倍频器的最优化设计,最终完成器件的加工及测试。测试结果表明,在输入80~86 GHz,20 d Bm的驱动信号下,倍频器的最大输出功率达12.21 m W,倍频效率11%,输出频点为163 GHz;当前端输入功率达到饱和状态时,该频点输出功率可达21.41 m W。展开更多
为了改善W波段全波段Schottky二极管三倍频器高端性能,建立倍频二极管实际安装电路环境下的三维精确仿真模型.在传统去嵌入法提取二极管等效电路参数工作基础上,改进了阻抗参数提取方法.采用UMS公司的DBES105a双Schottky结二极管作为倍...为了改善W波段全波段Schottky二极管三倍频器高端性能,建立倍频二极管实际安装电路环境下的三维精确仿真模型.在传统去嵌入法提取二极管等效电路参数工作基础上,改进了阻抗参数提取方法.采用UMS公司的DBES105a双Schottky结二极管作为倍频器件,将二极管封装、焊盘(安装二极管的微带端线)及邻近的腔体空间作为一个子区域进行三维建模分析,结合Schottky结的非线性模型,深入研究了焊盘尺寸、管子安装高度及腔体尺寸对输入输出阻抗宽带特性的影响.在此基础上,采用场路结合的仿真技术,优化设计了W波段宽带无源三倍频器.实验测试结果表明,在约为20 d Bm功率激励下,所设计的三倍频器在75~110 GHz内输出功率典型值为5 d Bm,功率波动小于±1.25 d Bm,实现了倍频器在W波段全波段优良的功率平坦度特性.展开更多
文摘研制了一种基于肖特基变容二极管的0.17 THz二倍频器,该器件为0.34 THz无线通信系统收发前端提供了低相噪、低杂散的本振信号。倍频器结构基于波导腔体石英基片微带电路实现,其核心器件是多结正向并联的肖特基变容二极管。文中采用结参数模型和三维电磁模型相结合的方式对二极管进行建模,通过两种电路匹配方式实现了0.17 THz二倍频器的最优化设计,最终完成器件的加工及测试。测试结果表明,在输入80~86 GHz,20 d Bm的驱动信号下,倍频器的最大输出功率达12.21 m W,倍频效率11%,输出频点为163 GHz;当前端输入功率达到饱和状态时,该频点输出功率可达21.41 m W。
文摘太赫兹倍频器是实现太赫兹源的重要途径之一。基于线性叠加技术,研制了0.38 THz单级无源四倍频单片。采用平面环形巴伦与正交混合网络级联的方式,设计了四路移相功分结构,通过零电长度合成,实现了单级四倍频,同时基波和其他无用谐波得到了很好的抑制。设计中先对无源结构进行三维电磁场仿真,然后与有源部分联合仿真优化,在370~410 GHz频率范围内,变频损耗小于25 d B。
文摘为了改善W波段全波段Schottky二极管三倍频器高端性能,建立倍频二极管实际安装电路环境下的三维精确仿真模型.在传统去嵌入法提取二极管等效电路参数工作基础上,改进了阻抗参数提取方法.采用UMS公司的DBES105a双Schottky结二极管作为倍频器件,将二极管封装、焊盘(安装二极管的微带端线)及邻近的腔体空间作为一个子区域进行三维建模分析,结合Schottky结的非线性模型,深入研究了焊盘尺寸、管子安装高度及腔体尺寸对输入输出阻抗宽带特性的影响.在此基础上,采用场路结合的仿真技术,优化设计了W波段宽带无源三倍频器.实验测试结果表明,在约为20 d Bm功率激励下,所设计的三倍频器在75~110 GHz内输出功率典型值为5 d Bm,功率波动小于±1.25 d Bm,实现了倍频器在W波段全波段优良的功率平坦度特性.