主要从三个不同角度探究并分析了基于In Ga N材料的高压LED的发光效率优于传统大功率LED的原因。为了保证实验结论的可靠性,文中所采用的实验样品具有相同的芯片尺寸和材料以及相同的封装结构。经过大量的实验证明,更均匀的电流分布和...主要从三个不同角度探究并分析了基于In Ga N材料的高压LED的发光效率优于传统大功率LED的原因。为了保证实验结论的可靠性,文中所采用的实验样品具有相同的芯片尺寸和材料以及相同的封装结构。经过大量的实验证明,更均匀的电流分布和小芯片间隙的出光,使得高压LED的发光效率优于传统大功率LED。结果显示,在相同的1 W输入功率下,高压LED的发光效率比传统大功率LED高大约4.5%。展开更多
A new lifetime control technique-localized platinum lifetime control (LPLC) is introduced. Silicon samples are implanted with 550keV protons at dosages from 1 × 10^13 to 5 × 10^14 cm^-2. Subsequently, plat...A new lifetime control technique-localized platinum lifetime control (LPLC) is introduced. Silicon samples are implanted with 550keV protons at dosages from 1 × 10^13 to 5 × 10^14 cm^-2. Subsequently, platinum diffusion in silicon is performed at 700 or 750℃ for 15 or 30min,respectively. Then the in-diffused platinum into damaged regions of the proton-implanted silicon is investigated by use of deep-level transient spectroscopy (DLTS). Finally, for all of the LPLC samples, the distribution of the in-diffused substitutional platinum agrees well with the damage distribution resulting from the low-dosage proton implantation. Also, the diodes show a very low leakage current even at elevated temperatures while keeping the major advantages of ion irradiation devices, including low turn-off loss and soft recovery.展开更多
文摘主要从三个不同角度探究并分析了基于In Ga N材料的高压LED的发光效率优于传统大功率LED的原因。为了保证实验结论的可靠性,文中所采用的实验样品具有相同的芯片尺寸和材料以及相同的封装结构。经过大量的实验证明,更均匀的电流分布和小芯片间隙的出光,使得高压LED的发光效率优于传统大功率LED。结果显示,在相同的1 W输入功率下,高压LED的发光效率比传统大功率LED高大约4.5%。
文摘A new lifetime control technique-localized platinum lifetime control (LPLC) is introduced. Silicon samples are implanted with 550keV protons at dosages from 1 × 10^13 to 5 × 10^14 cm^-2. Subsequently, platinum diffusion in silicon is performed at 700 or 750℃ for 15 or 30min,respectively. Then the in-diffused platinum into damaged regions of the proton-implanted silicon is investigated by use of deep-level transient spectroscopy (DLTS). Finally, for all of the LPLC samples, the distribution of the in-diffused substitutional platinum agrees well with the damage distribution resulting from the low-dosage proton implantation. Also, the diodes show a very low leakage current even at elevated temperatures while keeping the major advantages of ion irradiation devices, including low turn-off loss and soft recovery.