Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)is studied for the fabrication of low loss silicon based waveguide. The influence of ...Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)is studied for the fabrication of low loss silicon based waveguide. The influence of laser annealing on ICPECVD-deposited SiO2 film is investigated. The surface roughness, refractive index, and etch rate of annealed samples are compared with those of SiO2 film obtained by thermal oxidation. It is demonstrated that the performance of ICPECVD-deposited SiO2 film can be significantly improved by laser annealing. Al2O3/SIO2 waveguide has been fabricated on silicon substrate with the SiO2 lower cladding formed by ICPECVD and laser annealing process, and its propagation loss is found to be comparable with that of the waveguide with thermally oxidized lower cladding.展开更多
As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum we...As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two color HgCdTe photodiodes and quantum well infrared photodetectors is presented. More attention is devoted to HgCdTe detectors. The two color detector arrays are based upon an n P N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials. Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP’s narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.展开更多
基金This work was supported by the National Basic Research Program of China (Nos. 2012CB315605 and 2014CB340002), the National Natural Science Foundation of China (Grant Nos. 61210014,61321004, 61307024, 61574082 and 51561165012), the High Technology Researeh and Development Program of China(No. 2015AA017101), the Independent Research Program of Tsinghua University (No. 20131089364) and the Open Fund of State Key Laboratory on Integrated Optoelectronics (Nos. IOSKL2012KF08 and IOSKL2014KF09).
文摘Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)is studied for the fabrication of low loss silicon based waveguide. The influence of laser annealing on ICPECVD-deposited SiO2 film is investigated. The surface roughness, refractive index, and etch rate of annealed samples are compared with those of SiO2 film obtained by thermal oxidation. It is demonstrated that the performance of ICPECVD-deposited SiO2 film can be significantly improved by laser annealing. Al2O3/SIO2 waveguide has been fabricated on silicon substrate with the SiO2 lower cladding formed by ICPECVD and laser annealing process, and its propagation loss is found to be comparable with that of the waveguide with thermally oxidized lower cladding.
文摘As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two color HgCdTe photodiodes and quantum well infrared photodetectors is presented. More attention is devoted to HgCdTe detectors. The two color detector arrays are based upon an n P N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials. Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP’s narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.
基金Supported by the national Natural Science Foundation of China(60676063)the Science and Technology Commssion of Shanghai Mu-nicipality(05ZR14133,06JC14072)the Knowledge Innovation Program of Chinese Academy of Sciences.