Background Chronic liver disease causes aberrant formation of fibrous tissue that impedes normal liver function, ultimately resulting in liver cirrhosis. Iron uptake can occur within the hepatic parenchyma or within t...Background Chronic liver disease causes aberrant formation of fibrous tissue that impedes normal liver function, ultimately resulting in liver cirrhosis. Iron uptake can occur within the hepatic parenchyma or within the various nodules that form in a cirrhotic liver, termed siderotic nodules (SN). We aimed to investigate the diagnostic performance of susceptibility weighted imaging (SWI) for detection of SN in patients with liver cirrhosis, and to evaluate the potential of SN numbers for assessing the degree of hepatic iron deposition, liver function, and liver fibrosis stage. Methods Ninety-one patients with chronic liver cirrhosis, who underwent megnetic resonance imagine (MRI) scanning in our department between November 2010 and April 2011, were included in the study. A 3.0T MRI scanner was used to acquire T1WI, T2WI, T2*WI, and SWI images. The number of nodules, signal intensity ratio (SIR), and contrast noise ratio (CNR) were recorded and analyzed by chi-square and ANOVA statistical tests. Correlation analysis was performed to evaluate the correlations between the number of SN and Child-Pugh classification, ferritin and hyaluronic acid levels. Results The sensitivity of SWI, T1WI, T2WI, and T2*WI for detecting SN was 62.5%, 12.1%, 24.2% and 41.8%, respectively. SWI detected significantly more nodules than routine T1WI, T2WI, and T2*WI procedures (P 〈0.05). The SIR was the lowest in SWI (0.361±0.209), as compared to T1WI (0.852±0.163), T2WI (0.584±0.172), and T2*WI (0.497±0.196). The CNR was the highest in SWI (13.932±5.637), as compared to T1WI (9.147±5.785), T2WI (9.771±5.490), and T2*WI (11.491±4.573). The correlation coefficients of the number of SN with ferritin, Child-Pugh classification, and hyaluronic acid levels were 0.672, -0.055, and 0.163, respectively. Conclusions The sensitivity and contrast of SWI for detecting SN in patients with liver cirrhosis are higher than conventional MRI. The number of SN can help to assess the 展开更多
文摘Background Chronic liver disease causes aberrant formation of fibrous tissue that impedes normal liver function, ultimately resulting in liver cirrhosis. Iron uptake can occur within the hepatic parenchyma or within the various nodules that form in a cirrhotic liver, termed siderotic nodules (SN). We aimed to investigate the diagnostic performance of susceptibility weighted imaging (SWI) for detection of SN in patients with liver cirrhosis, and to evaluate the potential of SN numbers for assessing the degree of hepatic iron deposition, liver function, and liver fibrosis stage. Methods Ninety-one patients with chronic liver cirrhosis, who underwent megnetic resonance imagine (MRI) scanning in our department between November 2010 and April 2011, were included in the study. A 3.0T MRI scanner was used to acquire T1WI, T2WI, T2*WI, and SWI images. The number of nodules, signal intensity ratio (SIR), and contrast noise ratio (CNR) were recorded and analyzed by chi-square and ANOVA statistical tests. Correlation analysis was performed to evaluate the correlations between the number of SN and Child-Pugh classification, ferritin and hyaluronic acid levels. Results The sensitivity of SWI, T1WI, T2WI, and T2*WI for detecting SN was 62.5%, 12.1%, 24.2% and 41.8%, respectively. SWI detected significantly more nodules than routine T1WI, T2WI, and T2*WI procedures (P 〈0.05). The SIR was the lowest in SWI (0.361±0.209), as compared to T1WI (0.852±0.163), T2WI (0.584±0.172), and T2*WI (0.497±0.196). The CNR was the highest in SWI (13.932±5.637), as compared to T1WI (9.147±5.785), T2WI (9.771±5.490), and T2*WI (11.491±4.573). The correlation coefficients of the number of SN with ferritin, Child-Pugh classification, and hyaluronic acid levels were 0.672, -0.055, and 0.163, respectively. Conclusions The sensitivity and contrast of SWI for detecting SN in patients with liver cirrhosis are higher than conventional MRI. The number of SN can help to assess the