A long pulse electron cyclotron resonance heating(ECRH)system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak,and the first EC wave was successfully injecte...A long pulse electron cyclotron resonance heating(ECRH)system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak,and the first EC wave was successfully injected into plasma during the 2015 spring campaign.The system is mainly composed of four 140 GHz gyrotron systems,4 ITER-Like transmission lines,4 independent channel launchers and corresponding power supplies,a water cooling,control &inter-lock system etc.Each gyrotron is expected to deliver a maximum power of 1 MW and be operated at 100-1000 s pulse lengths.The No.1 and No.2 gyrotron systems have been installed.In the initial commissioning,a series of parameters of 1 MW 1 s,900 k W 10 s,800 k W 95 s and650 k W 753 s have been demonstrated successfully on the No.1 gyrotron system based on calorimetric dummy load measurements.Significant plasma heating and MHD instability suppression effects were observed in EAST experiments.In addition,high confinement(H-mode)discharges triggered by ECRH were obtained.展开更多
1.Introduction New sustainable energy is urgently needed to meet the fastgrowing requirement for clean energy in this century.Nearly 80%of the world’s energy is still generated by burning fossil fuels,resulting in po...1.Introduction New sustainable energy is urgently needed to meet the fastgrowing requirement for clean energy in this century.Nearly 80%of the world’s energy is still generated by burning fossil fuels,resulting in pollution and climate change.To realize long-term sustainable development,it is necessary to explore large-scale new energy sources that do not produce carbon dioxide(CO_(2)),within the next few decades.展开更多
This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnost...This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnostic system, the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time. The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems (including electron-cyclotron emission, hard x-ray, neutrons). It is found that the intensity of infrared synchrotron radiation and the electron-cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons. The Parail and Pogutse instability is a possible mechanism for the FPAS.展开更多
A microwave reflectometry system operating in the V-band frequency with extraor- dinary mode polarization has been developed on the EAST tokamak. The reflectometry system, using a voltage-controlled oscillator (VCO)...A microwave reflectometry system operating in the V-band frequency with extraor- dinary mode polarization has been developed on the EAST tokamak. The reflectometry system, using a voltage-controlled oscillator (VCO) source driven by an arbitrary waveform generator with high temporal resolution, can operate for the density profile measurement. The result of the bench test shows that the output frequency of the VCO has a linear dependence on time. The dispersion of reflectometry system is determined and reported in this paper. The evolution of a pedestal density profile during the L-H transition is observed by the reflectometry in H-mode discharges on EAST tokamak. A frequency synthesizer is used to replace the VCO as microwave source for density fluctuation measurements. The level of density fluctuation in the pedestal shows an abrupt decrease when the plasma enters into H-mode. A coherent mode with a frequency of about 100 kHz is observed and the mode frequency decreases gradually as the pedestal evolves.展开更多
Divertor heat patterns induced by Lower Hybrid Current Drive (LHCD) L-mode plasmas are investigated using an infra-red (IR) camera system on an Experimental Advanced Superconducting Tokamak (EAST). A two-dimensi...Divertor heat patterns induced by Lower Hybrid Current Drive (LHCD) L-mode plasmas are investigated using an infra-red (IR) camera system on an Experimental Advanced Superconducting Tokamak (EAST). A two-dimensional finite element analysis code DFlux is used to compute heat flux along the poloidal divertor target and corresponding quantities. Outside the Origin Strike Zone (OSZ), a Second Peak Heat Flux (SPHF) zone, where the heat flux is even stronger than that at the OSZ, appears on the lower-outer (LO) divertor plates with LHCD and disappears immediately after switching off the LHCD. The main heat-flux shifts from the SPHF zone towards the OSZ when the divertor configuration converts from double null to lower single null, indicating that the growth of the SPHF zone is apparently affected by a plasma magnetic configuration. The heat patterns on the LO divertor plates are observed to be different from that on the lower-inner (LI) targets as the SPHF zone appears only on the LO divertor target. It is also found that the heat flux at the SPHF zone was obviously enhanced after the Supersonic Molecule Beam Injection (SMBI) pulse.展开更多
Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM ph...Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM phase have recently been studied on EAST. An edge spatial structure of density fluctuation and its dithering temporal evolution is observed for the first time on the EAST tokamak during the L-H transition phase. A coherent mode usually appears during the ELM-free phase prior to the first ELM on EAST tokamak. The mode frequency gradually decreases as the pedestal evolves. Analysis shows that the coherent mode is in the pedestal region inside the separatrix. In plasma with type-III ELMs, a precursor mode before ELM is usually observed. The frequency of the precursor was initially about 150 kHz and gradually decreased till the next ELM. The mode amplitude increases or shows saturation before ELM. In the plasma with compound ELMs composed of high and low frequency ELMs, the precursor was also observed before the high frequency ELM while the harmonic oscillations with frequencies of 20 kHz, 40 kHz and 60 kHz appear before the low frequency ELM.展开更多
An upgraded infrared (IR) imaging system which provides a wide field of view (FOV) has been installed on the Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperatures on plasma fac...An upgraded infrared (IR) imaging system which provides a wide field of view (FOV) has been installed on the Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperatures on plasma facing components. Modified magnetic topology induced by lower hybrid wave (LHW) can lead to the formation of striated heat flux (SHF} on divertor plates which can be clearly observed by IR camera. In this paper, LHW power modulation is applied to analyze the appearance of SHF. It is also demonstrated that deuterium (D) pellet injection and supersonic molecular beam injection (SMBI) can to some extent reduce the heat flux on the outer strike point (OSP), but enhance the SHF on lower outer plates (LOP) of divertor. This may provide an optional approach to actively control the distribution of heat flux on diveror plates, which can protect materials from long duration high-heat flux.展开更多
A new edge tangential multi-energy soft x-ray(ME-SXR) diagnostic with high temporal(≤ 0.1 ms) and spatial(~1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma....A new edge tangential multi-energy soft x-ray(ME-SXR) diagnostic with high temporal(≤ 0.1 ms) and spatial(~1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile(approximately from r a~ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil' technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.展开更多
Abstract EAST has demonstrated its capability of long pulse operation using RF heating (LHCD and ICRF) in past experiments. One key issue to realize the long pulse H-mode expert- meats is to sustain the plasma curre...Abstract EAST has demonstrated its capability of long pulse operation using RF heating (LHCD and ICRF) in past experiments. One key issue to realize the long pulse H-mode expert- meats is to sustain the plasma current for steady state operation. Based on the calculations of the transport code ONETWO and its coupled RF code GENRAY, two scenarios have been proposed to achieve the 10 s H-mode plasma with Ip=400 kA, 〈 ne 〉=4.5×1019 m-a, βN=2, and the 100 s H-mode plasma with Ip=280 kA, 〈 ne 〉=3.5×1019 m-a, βN=1.8 recently. The current drive of lower hybrid wave is an important issue in the two scenarios. An experimental result on lower hybrid current drive in H-mode plasmas on EAST is also presented.展开更多
Sawtooth control experiments were performed on HT-7 with a limiter configuration and on the Experimental Advanced Superconducting Tokamak (EAST) with a double null con- figuration. The sawtooth period can be modifie...Sawtooth control experiments were performed on HT-7 with a limiter configuration and on the Experimental Advanced Superconducting Tokamak (EAST) with a double null con- figuration. The sawtooth period can be modified by lower hybrid wave (LHW) and ion cyclotron resonance frequency (ICRF). Different sawtooth behavior was observed with the same plasma density, LHW power but different plasma currents on HT-7. There was a dwell time between LHW added and the sawtooth stabilization on HT-7 while the sawtooth stabilization immediately happened when LHW power was injected on EAST. The possible mechanism of the sawtooth control is discussed in this paper. All the experimental results have proved that power deposition of the radio frequency (RF) should be the key factor for sawtooth control.展开更多
A multi-channel retarding field analyzer(MC-RFA) including two RFA modules and two Langmuir probes to measure the ion and electron temperature profiles within the scrape-off layer was developed for investigations of...A multi-channel retarding field analyzer(MC-RFA) including two RFA modules and two Langmuir probes to measure the ion and electron temperature profiles within the scrape-off layer was developed for investigations of the interplay between magnetic topology and plasma transport at the plasma boundary.The MC-RFA probe for the stellarator W7-X and first measurements at the tokamak EAST was designed.The probe head allows simultaneous multichannel ion temperature as well as for electron temperature measurements.The usability for radial correlation measurements of the measured ion currents is also given.展开更多
By installing an X-mode polarized Q-band(32-56 GHz) reflectometry at the low field side on EAST,the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas.A ...By installing an X-mode polarized Q-band(32-56 GHz) reflectometry at the low field side on EAST,the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas.A Monte Carlo procedure has been developed to analyze the density profiles by considering the error of time delay measured by reflectometry.By combining this Q-band and previously developed V- and W-band reflectometries,the density profiles from edge to core can be measured in most EAST experiments.The line integrated densities deduced from density profiles measured by reflectometry are consistent with those directly measured by a horizontal interferometer.The density pedestal measured by reflectometry shows a clear crash during an ELM(edge localized mode) event,after which the pedestal gradually increases and recovers in 10 ms and then remains little changed up to the next ELM.展开更多
To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER, the radiative divertor experiments with argon(Ar) seeding under ITER-like tungsten divertor condition we...To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER, the radiative divertor experiments with argon(Ar) seeding under ITER-like tungsten divertor condition were carried out during recent EAST campaigns. The experimental results reveal the high efficiency of reducing heat load and particle flux onto the divertor targets owing to increased radiation by Ar seeding. We achieve detached plasmas in these experiments. The inner–outer divertor asymmetry reduces after Ar seeding. Impurities, such as Ar, C, Li, and W, exist in the entire space of the vacuum chamber during EAST operations, and play important roles in power exhausting and accelerating the plasma detachment process. It is remarkable that the contamination of the core plasma is observed using Ar seeding owing to the sputtering of plasma facing components(PFCs), particularly when Ar impurity is injected from the upper tungsten divertor.展开更多
Based on the passive spectroscopy,the D_α atomic emission spectra in the boundary region of the plasma have been measured by a high resolution optical spectroscopic multichannel analysis(OSMA) system in EAST tokama...Based on the passive spectroscopy,the D_α atomic emission spectra in the boundary region of the plasma have been measured by a high resolution optical spectroscopic multichannel analysis(OSMA) system in EAST tokamak.The Zeeman splitting of the D_α spectral lines has been observed.A fitting procedure by using a nonlinear least squares method was applied to fit and analyze all polarization π and ±σ components of the D_α atomic spectra to acquire the information of the local plasma.The spectral line shape was investigated according to emission spectra from different regions(e.g.,low-field side and high-field side) along the viewing chords.Each polarization component was fitted and classified into three energy categories(the cold,warm,and hot components) based on different atomic production processes,in consistent with the transition energy distribution by calculating the gradient of the D_α spectral profile.The emission position,magnetic field intensity,and flow velocity of a deuterium atom were also discussed in the context.展开更多
The m/n = 1/1 and its higher harmonic modes are observed in sawtooth oscillations by using the novel high- resolution 2D ECE imaging system on the experimental advanced superconducting Tokamak (EAST). Higher harmoni...The m/n = 1/1 and its higher harmonic modes are observed in sawtooth oscillations by using the novel high- resolution 2D ECE imaging system on the experimental advanced superconducting Tokamak (EAST). Higher harmonic modes are appearing for a short time during the crash phase of sawtooth oscillation in lower βp plasma, which is not the preferabie position in the poloidal cross section. These modes generate sharp pressure points on the inversion radius during the crash phase of sawtooth oscillation. Furthermore, reconnection events proceed in two distinctive phases. In the first phase, a small amount of heat is expelled through the weak reconnection while in the second phase the remaining large quantity of heat and particles emerged rapidly from the hot core to the peripheral region of the inversion radius. In addition, these harmonic modes are only found before and after the ICRF pulse, while in the ICRF pulse only the (1,1) mode exists in the sawtooth oscillation.展开更多
A new pellet injection system has been equipped on the experimental advanced superconducting tokamak(EAST) in the 2012 campaign,with a pellet size of Ф 2 mm×2 mm,a frequency of1 Hz–10 Hz and velocity of 150 m...A new pellet injection system has been equipped on the experimental advanced superconducting tokamak(EAST) in the 2012 campaign,with a pellet size of Ф 2 mm×2 mm,a frequency of1 Hz–10 Hz and velocity of 150 m s^-1–300 m s^-1.The deuterium pellet is well-known for plasma fuelling as well as for triggering the edge localized mode(ELM).In the 2012 campaign,pellet injection experiments were successfully carried out on EAST.Temporary plasma detachment achieved by deuterium pellets has been observed in a double null(DN) divertor configuration,with multi-pellet injections at a repetition frequency of 2 Hz.The partial detachment of the outer divertors and complete detachment of the inner divertors was achieved after 35 ms of each pellet injection,which have a duration of 30–60 ms with the maximum degree of detachment(DOD) reaching 3.5 and 37,respectively.Meanwhile,the multifaceted asymmetric radiation from the edge(MARFE) phenomena was also observed at the high field side(HFS) near both the lower and upper X-points with radiation loss suddenly increased to about 15%–70%,which may be the main cause of divertor plasma detachment.The temporary detachment induced by pellet injection may act as a new way to study divertor detachment behaviors.展开更多
In the experimental advanced superconducting tokamak,density pump-out phenomena were observed by using a multi-channel polarimeter-interferometer system under different heating schemes of ion cyclotron resonant heatin...In the experimental advanced superconducting tokamak,density pump-out phenomena were observed by using a multi-channel polarimeter-interferometer system under different heating schemes of ion cyclotron resonant heating,electron cyclotron resonance heating,and neutral beam injection.The density pump-out was also induced with application of resonant magnetic perturbation,accompanied with a degradation of particle confinement.For the comparison analysis in all heating schemes,the typical plasma parameters are plasma current 400 k A,toroidal field 2 T,and line average density 2×10^19m^-3.The experimental results show that the degree of pump-out is concerned with electron density and heating power.Low density deuterium low confinement(L-mode) plasmas(〈3.5×10^19m^-3) show strong pump-out effects.The density pump-out correlated with a significant drop of particle confinement.展开更多
High βp scenario is foreseen to be a promising candidate operational mode for steady-state tokamak fusion reactors.Dedicated experiments on EAST and data analysis find that density gradient ▽n is a control knob to i...High βp scenario is foreseen to be a promising candidate operational mode for steady-state tokamak fusion reactors.Dedicated experiments on EAST and data analysis find that density gradient ▽n is a control knob to improve energy confinement in high βp plasmas at low toroidal rotatoon as projected for a fusion reactor.Different from previously known turbulent stabilization mechanisms such as E × B shear and Shafranov shift,high density gradient can enhance the Shafranov shift stabilizing effect significantly in high βp regime,giving that a higher density gradient is readily accessible in future fusion reactors with lower collisionality.This new finding is of great importance for the next-step fusion development because it may open a new path towards even higher energy conBnement in the high βp scenario.It has been demonstrated in the recent EAST experiments,i.e.,a fully non-inductive high βp(~2) H-mode plasma(H98y2≥1.3) has been obtained for a duration over 100 current diffusion times,which sets another new world record of long-pulse high-performance tokamak plasma operation with the normalized performance approaching the ITER and CFETR regimes.展开更多
Using a tangentially viewing x-ray imaging crystal spectrometer, substantial co-current rotation driven by lower hybrid current drive(LHCD) at 4.6 GHz is observed on EAST tokamak. This study presents plasma rotation...Using a tangentially viewing x-ray imaging crystal spectrometer, substantial co-current rotation driven by lower hybrid current drive(LHCD) at 4.6 GHz is observed on EAST tokamak. This study presents plasma rotation behaviors with 4.6 GHz LHCD injection. Typically, the 10-20 km/s co-current rotation change and the transport of rotation velocity from edge to core are observed. The relationship between plasma parameters and rotation is also investigated, indicating that rotation decreases with increasing internal inductance(li) and increases with increasing safety factor(q0). Hysteresis between rotation and Te plasma stored energy is observed, suggesting different response times between the electron heating and rotation acceleration by LHCD. A comparison between the rotations driven by 4.6 G LHCD and 2.45 G LHCD on EAST is also presented, in which higher frequency LHCD could induce more rotation changes.展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2011GB102000,2012GB103000 and 2015GB103000)
文摘A long pulse electron cyclotron resonance heating(ECRH)system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak,and the first EC wave was successfully injected into plasma during the 2015 spring campaign.The system is mainly composed of four 140 GHz gyrotron systems,4 ITER-Like transmission lines,4 independent channel launchers and corresponding power supplies,a water cooling,control &inter-lock system etc.Each gyrotron is expected to deliver a maximum power of 1 MW and be operated at 100-1000 s pulse lengths.The No.1 and No.2 gyrotron systems have been installed.In the initial commissioning,a series of parameters of 1 MW 1 s,900 k W 10 s,800 k W 95 s and650 k W 753 s have been demonstrated successfully on the No.1 gyrotron system based on calorimetric dummy load measurements.Significant plasma heating and MHD instability suppression effects were observed in EAST experiments.In addition,high confinement(H-mode)discharges triggered by ECRH were obtained.
文摘1.Introduction New sustainable energy is urgently needed to meet the fastgrowing requirement for clean energy in this century.Nearly 80%of the world’s energy is still generated by burning fossil fuels,resulting in pollution and climate change.To realize long-term sustainable development,it is necessary to explore large-scale new energy sources that do not produce carbon dioxide(CO_(2)),within the next few decades.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10935004 and 10775041)partly by JSPS-CAS Core University Program in the field of "Plasma and Nuclear Fusion"
文摘This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnostic system, the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time. The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems (including electron-cyclotron emission, hard x-ray, neutrons). It is found that the intensity of infrared synchrotron radiation and the electron-cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons. The Parail and Pogutse instability is a possible mechanism for the FPAS.
基金supported by National Natural Science Foundation of China(Nos.11305208 and 11275234)the National Magnetic Confinement Fusion Program of China(Nos.2014GB106000 and 2014GB106003)
文摘A microwave reflectometry system operating in the V-band frequency with extraor- dinary mode polarization has been developed on the EAST tokamak. The reflectometry system, using a voltage-controlled oscillator (VCO) source driven by an arbitrary waveform generator with high temporal resolution, can operate for the density profile measurement. The result of the bench test shows that the output frequency of the VCO has a linear dependence on time. The dispersion of reflectometry system is determined and reported in this paper. The evolution of a pedestal density profile during the L-H transition is observed by the reflectometry in H-mode discharges on EAST tokamak. A frequency synthesizer is used to replace the VCO as microwave source for density fluctuation measurements. The level of density fluctuation in the pedestal shows an abrupt decrease when the plasma enters into H-mode. A coherent mode with a frequency of about 100 kHz is observed and the mode frequency decreases gradually as the pedestal evolves.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB101001 and 2014GB101002)
文摘Divertor heat patterns induced by Lower Hybrid Current Drive (LHCD) L-mode plasmas are investigated using an infra-red (IR) camera system on an Experimental Advanced Superconducting Tokamak (EAST). A two-dimensional finite element analysis code DFlux is used to compute heat flux along the poloidal divertor target and corresponding quantities. Outside the Origin Strike Zone (OSZ), a Second Peak Heat Flux (SPHF) zone, where the heat flux is even stronger than that at the OSZ, appears on the lower-outer (LO) divertor plates with LHCD and disappears immediately after switching off the LHCD. The main heat-flux shifts from the SPHF zone towards the OSZ when the divertor configuration converts from double null to lower single null, indicating that the growth of the SPHF zone is apparently affected by a plasma magnetic configuration. The heat patterns on the LO divertor plates are observed to be different from that on the lower-inner (LI) targets as the SPHF zone appears only on the LO divertor target. It is also found that the heat flux at the SPHF zone was obviously enhanced after the Supersonic Molecule Beam Injection (SMBI) pulse.
基金supported by the National Magnetic Confinement Fusion Program of China(Nos.2010GB106000,2010GB106001)National Natural Science Foundation of China(Nos.11021565,11275234)
文摘Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM phase have recently been studied on EAST. An edge spatial structure of density fluctuation and its dithering temporal evolution is observed for the first time on the EAST tokamak during the L-H transition phase. A coherent mode usually appears during the ELM-free phase prior to the first ELM on EAST tokamak. The mode frequency gradually decreases as the pedestal evolves. Analysis shows that the coherent mode is in the pedestal region inside the separatrix. In plasma with type-III ELMs, a precursor mode before ELM is usually observed. The frequency of the precursor was initially about 150 kHz and gradually decreased till the next ELM. The mode amplitude increases or shows saturation before ELM. In the plasma with compound ELMs composed of high and low frequency ELMs, the precursor was also observed before the high frequency ELM while the harmonic oscillations with frequencies of 20 kHz, 40 kHz and 60 kHz appear before the low frequency ELM.
基金supported by National Natural Science Foundation of China(No.11275234)the National Magnetic Confinement Fusion Programof China(No.2014GB106001)
文摘An upgraded infrared (IR) imaging system which provides a wide field of view (FOV) has been installed on the Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperatures on plasma facing components. Modified magnetic topology induced by lower hybrid wave (LHW) can lead to the formation of striated heat flux (SHF} on divertor plates which can be clearly observed by IR camera. In this paper, LHW power modulation is applied to analyze the appearance of SHF. It is also demonstrated that deuterium (D) pellet injection and supersonic molecular beam injection (SMBI) can to some extent reduce the heat flux on the outer strike point (OSP), but enhance the SHF on lower outer plates (LOP) of divertor. This may provide an optional approach to actively control the distribution of heat flux on diveror plates, which can protect materials from long duration high-heat flux.
基金supported by National Magnetic Confinement Fusion Science Program of China under Contracts Nos.2015GB101000,2013GB106000,and 2013GB107000National Natural Science Foundation of China under Contracts Nos.11575235,11422546 and 11505222Youth Foundation of ASIPP under Grant No.Y45ETY2306
文摘A new edge tangential multi-energy soft x-ray(ME-SXR) diagnostic with high temporal(≤ 0.1 ms) and spatial(~1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile(approximately from r a~ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil' technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.
基金supported by the National Magnetic Confinement Fusion Program of China(Nos.2014GB106000,2014GB106001,and2014GB106003)National Natural Science Foundation of China(Nos.11275234,11321092,11305215,11305208,11405214)CAS Hefei Center for Scientific Research Program of China(No.2015SRG-HSC010)
文摘Abstract EAST has demonstrated its capability of long pulse operation using RF heating (LHCD and ICRF) in past experiments. One key issue to realize the long pulse H-mode expert- meats is to sustain the plasma current for steady state operation. Based on the calculations of the transport code ONETWO and its coupled RF code GENRAY, two scenarios have been proposed to achieve the 10 s H-mode plasma with Ip=400 kA, 〈 ne 〉=4.5×1019 m-a, βN=2, and the 100 s H-mode plasma with Ip=280 kA, 〈 ne 〉=3.5×1019 m-a, βN=1.8 recently. The current drive of lower hybrid wave is an important issue in the two scenarios. An experimental result on lower hybrid current drive in H-mode plasmas on EAST is also presented.
基金supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2010GB106000, 2010GB106001)National Natural Science Foundation of China (No. 11021565)
文摘Sawtooth control experiments were performed on HT-7 with a limiter configuration and on the Experimental Advanced Superconducting Tokamak (EAST) with a double null con- figuration. The sawtooth period can be modified by lower hybrid wave (LHW) and ion cyclotron resonance frequency (ICRF). Different sawtooth behavior was observed with the same plasma density, LHW power but different plasma currents on HT-7. There was a dwell time between LHW added and the sawtooth stabilization on HT-7 while the sawtooth stabilization immediately happened when LHW power was injected on EAST. The possible mechanism of the sawtooth control is discussed in this paper. All the experimental results have proved that power deposition of the radio frequency (RF) should be the key factor for sawtooth control.
基金funding from the Euratom research and training programme 2014–2018 under grant agreement No.633053supported by the National Magnetic Confinement Fusion Science Program of China under Contracts No.20113GB106003
文摘A multi-channel retarding field analyzer(MC-RFA) including two RFA modules and two Langmuir probes to measure the ion and electron temperature profiles within the scrape-off layer was developed for investigations of the interplay between magnetic topology and plasma transport at the plasma boundary.The MC-RFA probe for the stellarator W7-X and first measurements at the tokamak EAST was designed.The probe head allows simultaneous multichannel ion temperature as well as for electron temperature measurements.The usability for radial correlation measurements of the measured ion currents is also given.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB106000 and 2014GB106003)National Natural Science Foundation of China(Nos.11275234,11305215,11305208)
文摘By installing an X-mode polarized Q-band(32-56 GHz) reflectometry at the low field side on EAST,the zero density cutoff layer was determined and the edge density profile was measured in normally operating plasmas.A Monte Carlo procedure has been developed to analyze the density profiles by considering the error of time delay measured by reflectometry.By combining this Q-band and previously developed V- and W-band reflectometries,the density profiles from edge to core can be measured in most EAST experiments.The line integrated densities deduced from density profiles measured by reflectometry are consistent with those directly measured by a horizontal interferometer.The density pedestal measured by reflectometry shows a clear crash during an ELM(edge localized mode) event,after which the pedestal gradually increases and recovers in 10 ms and then remains little changed up to the next ELM.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575242,11575243,11505233,11575247,and 11605238)the National Magnetic Confinement Fusion Science Program(Grant Nos.2013GB105002 and 2013GB105001)
文摘To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER, the radiative divertor experiments with argon(Ar) seeding under ITER-like tungsten divertor condition were carried out during recent EAST campaigns. The experimental results reveal the high efficiency of reducing heat load and particle flux onto the divertor targets owing to increased radiation by Ar seeding. We achieve detached plasmas in these experiments. The inner–outer divertor asymmetry reduces after Ar seeding. Impurities, such as Ar, C, Li, and W, exist in the entire space of the vacuum chamber during EAST operations, and play important roles in power exhausting and accelerating the plasma detachment process. It is remarkable that the contamination of the core plasma is observed using Ar seeding owing to the sputtering of plasma facing components(PFCs), particularly when Ar impurity is injected from the upper tungsten divertor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11275231 and 11575249)the National Magnetic Confinement Fusion Energy Research Program of China(Grant No.2015GB110005)
文摘Based on the passive spectroscopy,the D_α atomic emission spectra in the boundary region of the plasma have been measured by a high resolution optical spectroscopic multichannel analysis(OSMA) system in EAST tokamak.The Zeeman splitting of the D_α spectral lines has been observed.A fitting procedure by using a nonlinear least squares method was applied to fit and analyze all polarization π and ±σ components of the D_α atomic spectra to acquire the information of the local plasma.The spectral line shape was investigated according to emission spectra from different regions(e.g.,low-field side and high-field side) along the viewing chords.Each polarization component was fitted and classified into three energy categories(the cold,warm,and hot components) based on different atomic production processes,in consistent with the transition energy distribution by calculating the gradient of the D_α spectral profile.The emission position,magnetic field intensity,and flow velocity of a deuterium atom were also discussed in the context.
基金Supported by the National Magnetic Confinement Fusion Energy Program of China under Grant Nos 2013GB106002 and 2014GB109002the National Natural Science Foundation of China under Grant Nos 10990210 and 11275200
文摘The m/n = 1/1 and its higher harmonic modes are observed in sawtooth oscillations by using the novel high- resolution 2D ECE imaging system on the experimental advanced superconducting Tokamak (EAST). Higher harmonic modes are appearing for a short time during the crash phase of sawtooth oscillation in lower βp plasma, which is not the preferabie position in the poloidal cross section. These modes generate sharp pressure points on the inversion radius during the crash phase of sawtooth oscillation. Furthermore, reconnection events proceed in two distinctive phases. In the first phase, a small amount of heat is expelled through the weak reconnection while in the second phase the remaining large quantity of heat and particles emerged rapidly from the hot core to the peripheral region of the inversion radius. In addition, these harmonic modes are only found before and after the ICRF pulse, while in the ICRF pulse only the (1,1) mode exists in the sawtooth oscillation.
基金supported by National Natural Science Foundation of China(Nos.11575236,11275231,11305206)the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB107003,2014GB106005,2015GB101000)
文摘A new pellet injection system has been equipped on the experimental advanced superconducting tokamak(EAST) in the 2012 campaign,with a pellet size of Ф 2 mm×2 mm,a frequency of1 Hz–10 Hz and velocity of 150 m s^-1–300 m s^-1.The deuterium pellet is well-known for plasma fuelling as well as for triggering the edge localized mode(ELM).In the 2012 campaign,pellet injection experiments were successfully carried out on EAST.Temporary plasma detachment achieved by deuterium pellets has been observed in a double null(DN) divertor configuration,with multi-pellet injections at a repetition frequency of 2 Hz.The partial detachment of the outer divertors and complete detachment of the inner divertors was achieved after 35 ms of each pellet injection,which have a duration of 30–60 ms with the maximum degree of detachment(DOD) reaching 3.5 and 37,respectively.Meanwhile,the multifaceted asymmetric radiation from the edge(MARFE) phenomena was also observed at the high field side(HFS) near both the lower and upper X-points with radiation loss suddenly increased to about 15%–70%,which may be the main cause of divertor plasma detachment.The temporary detachment induced by pellet injection may act as a new way to study divertor detachment behaviors.
基金Supported by the National Magnetic Confinement Fusion Program of China(Nos.2012GB101002 and 2014GB106002)National Nature Science Foundation of China(Nos.11375237 and 11105184)
文摘In the experimental advanced superconducting tokamak,density pump-out phenomena were observed by using a multi-channel polarimeter-interferometer system under different heating schemes of ion cyclotron resonant heating,electron cyclotron resonance heating,and neutral beam injection.The density pump-out was also induced with application of resonant magnetic perturbation,accompanied with a degradation of particle confinement.For the comparison analysis in all heating schemes,the typical plasma parameters are plasma current 400 k A,toroidal field 2 T,and line average density 2×10^19m^-3.The experimental results show that the degree of pump-out is concerned with electron density and heating power.Low density deuterium low confinement(L-mode) plasmas(〈3.5×10^19m^-3) show strong pump-out effects.The density pump-out correlated with a significant drop of particle confinement.
基金Supported by the National Magnetic Confinement Fusion Science Program of China under Grant No.2015GB103000.
文摘High βp scenario is foreseen to be a promising candidate operational mode for steady-state tokamak fusion reactors.Dedicated experiments on EAST and data analysis find that density gradient ▽n is a control knob to improve energy confinement in high βp plasmas at low toroidal rotatoon as projected for a fusion reactor.Different from previously known turbulent stabilization mechanisms such as E × B shear and Shafranov shift,high density gradient can enhance the Shafranov shift stabilizing effect significantly in high βp regime,giving that a higher density gradient is readily accessible in future fusion reactors with lower collisionality.This new finding is of great importance for the next-step fusion development because it may open a new path towards even higher energy conBnement in the high βp scenario.It has been demonstrated in the recent EAST experiments,i.e.,a fully non-inductive high βp(~2) H-mode plasma(H98y2≥1.3) has been obtained for a duration over 100 current diffusion times,which sets another new world record of long-pulse high-performance tokamak plasma operation with the normalized performance approaching the ITER and CFETR regimes.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2013GB112004 and 2015GB103002)the National Natural Science Foundation of China(Grant Nos.11405212 and 11261140328)the Major Program of Development Foundation of Hefei Center for Physical Science and Technology China(Grant No.2016FXZY008)
文摘Using a tangentially viewing x-ray imaging crystal spectrometer, substantial co-current rotation driven by lower hybrid current drive(LHCD) at 4.6 GHz is observed on EAST tokamak. This study presents plasma rotation behaviors with 4.6 GHz LHCD injection. Typically, the 10-20 km/s co-current rotation change and the transport of rotation velocity from edge to core are observed. The relationship between plasma parameters and rotation is also investigated, indicating that rotation decreases with increasing internal inductance(li) and increases with increasing safety factor(q0). Hysteresis between rotation and Te plasma stored energy is observed, suggesting different response times between the electron heating and rotation acceleration by LHCD. A comparison between the rotations driven by 4.6 G LHCD and 2.45 G LHCD on EAST is also presented, in which higher frequency LHCD could induce more rotation changes.