We report a high-stability ultrafast ultraviolet(UV)laser source at 352 nm by exploring an all-fiber,all-polarizationmaintaining(all-PM),Yb-doped femtosecond fiber laser at 1060 nm.The output power,pulse width,and opt...We report a high-stability ultrafast ultraviolet(UV)laser source at 352 nm by exploring an all-fiber,all-polarizationmaintaining(all-PM),Yb-doped femtosecond fiber laser at 1060 nm.The output power,pulse width,and optical spectrum width of the fiber laser are 6 W,244 fs,and 17.5 nm,respectively.The UV ultrashort pulses at a repetition rate of 28.9 MHz are generated by leveraging single-pass second-harmonic generation in a 1.3-mm-long BiB_(3)O_(6)(BIBO)and sum frequency generation in a 5.1-mm-long BIBO.The maximum UV output power is 596 mW.The root mean square error of the output power of UV pulses is 0.54%.This laser,with promising stability,is expected to be a nice source for frontier applications in the UV wavelength window.展开更多
In this work,we demonstrate the spectral manipulation in an ultrafast fiber laser system that generates ultrashort pulses with a repetition rate of 1.2 GHz and two switchable modes—a 1064-nm fundamental laser mode wi...In this work,we demonstrate the spectral manipulation in an ultrafast fiber laser system that generates ultrashort pulses with a repetition rate of 1.2 GHz and two switchable modes—a 1064-nm fundamental laser mode with a maximum output power of 66.6 W,and a 1125-nm Raman laser mode with a maximum output power of 17.23 W.The pulse width,beam quality,and power stability are carefully characterized.We also investigate a method to switch between the two modes by manipulating the duty cycle of the modulation signal.It is anticipated that this bi-mode ultrafast fiber laser system can be a promising ultrafast laser source for frontier applications,such as micromachining,bioimaging,and spectroscopy.展开更多
基金supported by the Basic Science (Natural science)Research Project of Higher Education of Jiangsu Province (Grant No.23KJB460019)the National Natural Science Foundation of China (Grant Nos.12302355 and 52075548)+2 种基金the Taishan Scholar Program of Shandong Province (Grant No.tsqn201909068)the Excellent Young Scientists Fund of Shandong Province (Grant No.2022HWYQ-071)the Fundamental Research Funds for the Central Universities (Grant No.20CX06074A)。
基金partially supported by the National Natural Science Foundation of China(NSFC)(Nos.62375087,12374304,U1609219,and 62235014)the NSFC Development of National Major Scientific Research Instrument(No.61927816)+3 种基金the Mobility Programme of the Sino-German(No.M-0296)the Introduced Innovative Team Project of Guangdong Pearl River Talents Program(No.2021ZT09Z109)the Natural Science Foundation of Guangdong Province(No.2021B1515020074)the Science and Technology Project of Guangdong(No.2020B1212060002)。
文摘We report a high-stability ultrafast ultraviolet(UV)laser source at 352 nm by exploring an all-fiber,all-polarizationmaintaining(all-PM),Yb-doped femtosecond fiber laser at 1060 nm.The output power,pulse width,and optical spectrum width of the fiber laser are 6 W,244 fs,and 17.5 nm,respectively.The UV ultrashort pulses at a repetition rate of 28.9 MHz are generated by leveraging single-pass second-harmonic generation in a 1.3-mm-long BiB_(3)O_(6)(BIBO)and sum frequency generation in a 5.1-mm-long BIBO.The maximum UV output power is 596 mW.The root mean square error of the output power of UV pulses is 0.54%.This laser,with promising stability,is expected to be a nice source for frontier applications in the UV wavelength window.
基金supported by the NSFC Development of National Major Scientific Research Instrument(No.61927816)the Introduced Innovative Team Project of Guangdong Pearl River Talents Program(No.2021ZT09Z109)+5 种基金the Natural Science Foundation of Guangdong Province(No.2021B1515020074)the Mobility Programme of the Sino-German(No.M-0296)the Double First Class Initiative(No.D6211170)the National Natural Science Foundation of China(Nos.U1609219 and 62235014)the Science and Technology Project of Guangdong(No.2020B1212060002)the Key R&D Program of Guangzhou(No.202007020003)。
文摘In this work,we demonstrate the spectral manipulation in an ultrafast fiber laser system that generates ultrashort pulses with a repetition rate of 1.2 GHz and two switchable modes—a 1064-nm fundamental laser mode with a maximum output power of 66.6 W,and a 1125-nm Raman laser mode with a maximum output power of 17.23 W.The pulse width,beam quality,and power stability are carefully characterized.We also investigate a method to switch between the two modes by manipulating the duty cycle of the modulation signal.It is anticipated that this bi-mode ultrafast fiber laser system can be a promising ultrafast laser source for frontier applications,such as micromachining,bioimaging,and spectroscopy.