期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On Lemon Defect Recognition with Visual Feature Extraction and Transfers Learning
1
作者 yizhi he Tiancheng Zhu +1 位作者 Mingxuan Wang Hanqing Lu 《Journal of Data Analysis and Information Processing》 2021年第4期233-248,共16页
Applying machine learning to lemon defect recognition can improve the efficiency of lemon quality detection. This paper proposes a deep learning-based classification method with visual feature extraction and transfer ... Applying machine learning to lemon defect recognition can improve the efficiency of lemon quality detection. This paper proposes a deep learning-based classification method with visual feature extraction and transfer learning to recognize defect lemons (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, green and mold defects). First, the data enhancement and brightness compensation techniques are used for data prepossessing. The visual feature extraction is used to quantify the defects and determine the feature variables as the bandit basis for classification. Then we construct a convolutional neural network with an embedded Visual Geome</span><span style="font-family:Verdana;">try Group 16 based (VGG16-based) network using transfer learning. The proposed model is compared with many benchmark models such as</span><span style="font-family:Verdana;"> K-</span></span><span style="font-family:Verdana;">n</span><span style="font-family:Verdana;">earest</span><span style="font-family:""> </span><span style="font-family:Verdana;">Neighbor (KNN) and Support Vector Machine (SVM). Result</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> show that the proposed model achieves the highest accuracy (95.44%) in the testing data set. The research provides a new solution for lemon defect recognition. 展开更多
关键词 Machine Learning Visual Feature Extraction Convolutional Neural Networks Transfer Learning
下载PDF
Point Cloud Classification Network Based on Graph Convolution and Fusion Attention Mechanism
2
作者 Tengteng Song Zhao Li +1 位作者 Zhenguo Liu yizhi he 《Journal of Computer and Communications》 2022年第9期81-95,共15页
The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification ... The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification methods have some shortcomings when extracting point cloud features, such as insufficient extraction of local information and overlooking the information in other neighborhood features in the point cloud, and not focusing on the point cloud channel information and spatial information. To solve the above problems, a point cloud classification network based on graph convolution and fusion attention mechanism is proposed to achieve more accurate classification results. Firstly, the point cloud is regarded as a node on the graph, the k-nearest neighbor algorithm is used to compose the graph and the information between points is dynamically captured by stacking multiple graph convolution layers;then, with the assistance of 2D experience of attention mechanism, an attention mechanism which has the capability to integrate more attention to point cloud spatial and channel information is introduced to increase the feature information of point cloud, aggregate local useful features and suppress useless features. Through the classification experiments on ModelNet40 dataset, the experimental results show that compared with PointNet network without considering the local feature information of the point cloud, the average classification accuracy of the proposed model has a 4.4% improvement and the overall classification accuracy has a 4.4% improvement. Compared with other networks, the classification accuracy of the proposed model has also been improved. 展开更多
关键词 Graph Convolution Neural Network Attention Mechanism Modelnet40 Point Cloud Classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部