We analytically and numerically investigate a signal light storing mechanism based on the controllable electromagnetically induced transparency(EIT)effect.We demonstrate that the isolation between the waveguide and th...We analytically and numerically investigate a signal light storing mechanism based on the controllable electromagnetically induced transparency(EIT)effect.We demonstrate that the isolation between the waveguide and the cavities cannot be achieved instantly as soon as the two cavities are tuned into resonance,no matter the index tuning rate is ultrafast or slow.We also investigate the temporal evolution features of the intracavity energy when the pulse during time is prolonged.We find many periodical oscillations of the trapped energy in both cavities,and they are entirely complementary.Our analysis shows that the adiabatic wavelength conversion in both cavities and a phase difference π between them play critical roles in this phenomenon.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11774098)the Guangdong Natural Science Foundation(Grant Nos.2022A1515011950 and 2023A1515010781)the Science and Technology Program of Guangzhou(Grant No.202002030500)。
文摘We analytically and numerically investigate a signal light storing mechanism based on the controllable electromagnetically induced transparency(EIT)effect.We demonstrate that the isolation between the waveguide and the cavities cannot be achieved instantly as soon as the two cavities are tuned into resonance,no matter the index tuning rate is ultrafast or slow.We also investigate the temporal evolution features of the intracavity energy when the pulse during time is prolonged.We find many periodical oscillations of the trapped energy in both cavities,and they are entirely complementary.Our analysis shows that the adiabatic wavelength conversion in both cavities and a phase difference π between them play critical roles in this phenomenon.
基金supported by the National Natural Science Foundation of China(Nos.52171125,52071178)the Open Testing Funding of Large Instruments and Equipment of Southwest Jiaotong University,China(No.2022SRII-003)the Open Funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University,China。