Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iP...Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iPS cells has not yet been reported. In this report, human iPS cells were induced to differentiate into hepatic cells by a stepwise protocol. The expression of liver cell markers and liver-related functions of the human iPS cell-derived cells were monitored and compared with that of differentiated human ES cells and primary human hepatocytes. Approximately 60% of the differentiated human iPS cells at day 7 expressed hepatic markers alpha fetoprotein and Alb. The differentiated cells at day 21 exhibited liver cell functions including albumin Asecretion, glycogen synthesis, urea production and inducible cytochrome P450 activity. The expression of hepatic markers and fiver-related functions of the iPS cellderived hepatic ceils were comparable to that of the human ES cell-derived hepatic cells. These results show that human iPS cells, which are similar to human ES cells, can be efficiently induced to differentiate into hepatocyte-like cells.展开更多
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we...A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.展开更多
In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study,...In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study, WUS and WUS.like WOX genes had been reported as essential for the development of the SAM. In this study, the consequences of gain of WOX1 function are described. Here we report the identification of an Arabidopsis gain-of-function mutant woxl-D, in which the expression level of the WOX1 (WUSCHEL HOMEOBOX 1) was elevated and subtle defects in meristem development were observed. The woxl-D mutant phenotype is dwarfed and slightly bushy, with a smaller shoot apex. The woxl-D mutant also produced small and dark green leaves, and exhibited a failure in anther dehiscence and male sterility. Molecular evidences showed that the transcription of the stem cell marker gene CLV3 was down-regulated in the meristem of woxl-D but accumulated in the other regions, i.e., in the root-hypocotyl junction and at the sites for lateral root initiation. The fact that the organ size and cell size in leaves of woxl-D are smaller than those in wild type suggests that cell expansion is possibly affected in order to have partially retarded the development of lateral organs, possibly through alteration of CLV3 expression pattern in the meristem. An S-adenosylmethionine decarboxylase (SAMDC) protein, SAMDC1, was found able to interact with WOX1 by yeast two-hybrid and pull-down assays in vitro. HPLC analysis revealed a significant reduction of polyamine content in woxl-D. Our results suggest that WOX1 plays an important role in meristem development in Arabidopsis, possibly via regulation of SAMDC activity and polyamine homeostasis, and/or by regulating CLV3 expression.展开更多
Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential. However, the perplexing issue of lithium dendrite growth impede...Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential. However, the perplexing issue of lithium dendrite growth impedes the commercial application. The initial nucleation and low Li ions diffusion rate in the electrolyte/electrode interface dominate the deposition behavior. Therefore, a uniform and flexible interface is urgently needed. Here, a facile method is proposed to prepare a thin and porous LiF-rich layer (TPL) by the in-situ reaction of small amount of ammonium hydrogen difluoride (NH4HF2) and Li metal. The deposition morphology on Li metal anode with LiF layer is significantly flat and homogeneous owning to low lateral diffusion barrier on LiF crystals and the porous structure of TPL film. Additionally, the symmetrical cells made with such TPL Li anodes show significantly stable cycling over 100 cycles at high current density of 6 mA/cm^2. The TPL Li|LiFePO4 full cells keep over 99% capacity retention after 100 cycles at 2.0 C. This approach serves as a facile and controllable way of adjusting the protective layer on Li metal.展开更多
In this paper, the periodically unsteady pressure field and head-drop phenomenon caused by leading edge cavitation have been investigated numerically by computational fluid dynamics (CFD) in a single stage centrifug...In this paper, the periodically unsteady pressure field and head-drop phenomenon caused by leading edge cavitation have been investigated numerically by computational fluid dynamics (CFD) in a single stage centrifugal pump. A CFD model for cavita- tion steady and unsteady simulation has been calculated using the κ-ω SST turbulence model combining with a multiphase ap- proach, based on a homogeneous model assumption. A truncated form of Rayleigh-Plesset equation is used as a source term for the inter-phase mass transfer. The CFD computational region includes the suction cone, impeller, side chambers and volute, as well as suction and pressure pipes. The results were compared with experimental data under non-cavitation and cavitation conditions and a good agreement was obtained for the global performance, the experimental data of the head and the efficiency are 34.04 m and 74.42% at BEP, respectively, the predicted head is 34.31 m and the predicted efficiency is 73.75%. The analy- sis of inner flow pattern shows that the vortex flow generation in the rear of cavity region is the main reason of the head-drop. Obvious increasing can be observed for the amplitude of the pressure fluctuation at the blade passing frequency with different cavitation situations, and subpeak can be found. Besides, the effects of unsteady flow in the side chambers cannot be neglected for accurately predicting the inner flow of the pump. These results imply that this numerical method is suitable for the cavitat- ing flow in the pump.展开更多
Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This...Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, teiomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRN- deficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.展开更多
Age-associated changes in immune cells have been linked to an increased risk for infection.However,a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking....Age-associated changes in immune cells have been linked to an increased risk for infection.However,a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking.Here,we combined scRNA-seq,mass cytometry and sCATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19.We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector,cytotoxic,exhausted and reg-ulatory cells,along with increased late natural killer cells,age-associated B cells,inflammatory monocytes and age-associated dendritic cells.In addition,the expression of genes,which were implicated in coron-avirus susceptibility,was upregulated in a cell subtype-specific manner with age.Notably,COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senes-cence.Therefore,these findings suggest that a dysreg-ulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.展开更多
Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are re...Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization(SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer(PBL)parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.展开更多
OBJECTIVE: To evaluate the therapeutic effectiveness and safety of Jinying capsule on pelvic inflammatory disease(PID) in patients with symptoms identified as the pattern of damp and heat accumulation in terms of Trad...OBJECTIVE: To evaluate the therapeutic effectiveness and safety of Jinying capsule on pelvic inflammatory disease(PID) in patients with symptoms identified as the pattern of damp and heat accumulation in terms of Traditional Chinese Medicine(TCM).METHODS: We conducted a double-blinded, multicenter, randomized, placebo-controlled clinical trial which included 155 patients diagnosed with PID and identified as symptom pattern of damp and heat accumulation. They were randomly divided into experimental group(n = 78) and control group(n = 77) according to a random number table. The treatment lasted for a period of 28 d. The experimental group was given Jinying capsules and oral levofloxacin plus oral metronidazole for first 7 d.They continued with Jinying capsules and levofloxacin placebo and metronidazole placebo for another 7 d. For the remaining 14 d, they continued with Jinying capsules only. Whereas, the control group was treated with oral levofloxacin and metronidazole and Jinying capsule placebo for the first 14 d in the same way as the experimental group and then continued with Jinying capsule placebo only for the remaining 14 d. The clinical efficacy was assessed using McCormack scale, TCM symptom pattern scores, physicochemical indexes including white blood cell and erythrocyte sedimentation rate, C-reaction protein, smear of vaginal discharge,and pelvic ultrasound.RESULTS: Comparing McCormack scale between both groups after treatment, the difference in curative effect between both groups was significant (P = 0.0269). The cure rate of the experimental group and control group is 76.32% and 59.46% respectively at week 4. Comparing TCM symptom pattern scores between both groups before and after treatment, the differences in total effective rate were both significant(P < 0.05). The curative effect rate of experimental group is 2.63% and 13.70% of the control group at week 1(P = 0.0131), and73.33% of the experimental group and 56.94% of the control group at week 4(P = 0.0369). No significant differences were found展开更多
Liver cancers, majority of which are primary hepatocellular carcinoma(HCC), continue to be on the rise in the world. Furthermore, due to the lack of effective treatments, liver cancer ranks the 4th most common cause o...Liver cancers, majority of which are primary hepatocellular carcinoma(HCC), continue to be on the rise in the world. Furthermore, due to the lack of effective treatments, liver cancer ranks the 4th most common cause of male cancer deaths. Novel therapies are urgently needed. Over the last few years,immunotherapies, especially the checkpoint blockades and adoptive cell therapies of engineered T cells,have demonstrated a great potential for treating malignant tumors including HCC. In this review, we summarize the current ongoing research of antigen-specific immunotherapies including cancer vaccines and adoptive cell therapies for HCC. We briefly discuss the HCC cancer vaccine and then focus on the antigen-specific T cells genetically engineered with the T cell receptor genes(TCRTs) and the chimeric antigen receptor genes(CARTs). We first review the current options of TCRTs and CARTs immunotherapies for HCC, and then analyze the factors and parameters that may help to improve the design of TCRTs and CARTs to enhance their antitumor efficacy and safety. Our goals are to render readers a panoramic view of the current stand of HCC immunotherapies and provide some strategies to design better TCRTs and CARTs to achieve more effective and durable antitumor effects.展开更多
Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss...Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss or degeneration of function.However,mutations occurring randomly under natural conditions have provided very limited genetic resources for yield increases.In this study,potentially yield-increasing alleles of two genes closely associated with yield were edited artificially.The recently developed CRISPR/Cas9system was used to edit two yield genes:Grain number 1a(Gn1a)and DENSE AND ERECT PANICLE1(DEP1).Several mutants were identified by a target sequence analysis.Phenotypic analysis confirmed one mutant allele of Gn1a and three of DEP1 conferring yield superior to that conferred by other natural high-yield alleles.Our results demonstrate that favorable alleles of the Gnla and DEP1 genes,which are considered key factors in rice yield increases,could be developed by artificial mutagenesis using genome editing technology.展开更多
Myocardial infarction(MI)is one of cardiovascular diseases that pose a serious threat to human health.The pathophysiology of MI is complex and contains several sequential phases including blockage of a coronary artery...Myocardial infarction(MI)is one of cardiovascular diseases that pose a serious threat to human health.The pathophysiology of MI is complex and contains several sequential phases including blockage of a coronary artery,necrosis of myocardial cells,inflammation,and myocardial fibrosis.Aiming at the treatment of different stages of MI,in this work,an injectable alginate based composite hydrogel is developed to load vascular endothelial active factor(VEGF)and silk fibroin(SF)microspheres containing bone morphogenetic protein 9(BMP9)for releasing VEGF and BMP9 to realize their respective functions.The results of in vitro experiments indicate a rapid initial release of VEGF during the first few days and a relatively slow and sustained release of BMP9 for days,facilitating the formation of blood vessels in the early stage and inhibiting myocardial fibrosis in the long-term stage,respectively.Intramyocardial injection of such composite hydrogel into the infarct border zone of mice MI model via multiple points promotes angiogenesis and reduces the infarction size.Taken together,these results indicate that the dual-release of VEGF and BMP9 from the composite hydrogel results in a collaborative effect on the treatment of MI and improvement of heart function,showing a promising potential for cardiac clinical application.展开更多
OBJECTIVE:To assess skin temperature response to menstruation at acupuncture points in primary dysmenorrhea(PD) patients and healthy volunteers so as to explore acupuncture point specificity in reflecting diseases in ...OBJECTIVE:To assess skin temperature response to menstruation at acupuncture points in primary dysmenorrhea(PD) patients and healthy volunteers so as to explore acupuncture point specificity in reflecting diseases in the light of skin temperature.METHODS:Fifty-two PD patients and 49 healthy volunteers were recruited.Skin temperature measurements were performed with a skin temperature assessment device at 10 points.Absolute difference between skin temperature of the same point on the left and right side is used as main outcome measure.RESULTS:On the first day of menstruation, when menstrual pain attacking in PD patients, a significant increase in skin temperature difference was detected at Taixi(KI 3) compared with the healthy group(P < 0.01).A significant reduction in skin temperature difference was detected at Taixi(KI 3) in the first day of menstruation compared with those values in the third day after menstruation(P < 0.01)in the healthy group.On the third day after menstruation, a significant reduction in skin temperature difference was found at Zhongdu(LR 6) in PD group compared with the healthy group(P < 0.05).No significant differences of skin temperature were detected at other points(P > 0.05).CONCLUSION:The skin temperature difference at menstruation-relevant points in PD patients did not all change significantly more than those in women without PD.Significant difference was only found in Taixi(KI 3), the Yuan-source point of Kidney meridian.展开更多
A novel coronavirus known as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has spread across the world,prompting the World Health Organization to declare the coronavirus disease of 2019(COVID-19)a public ...A novel coronavirus known as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has spread across the world,prompting the World Health Organization to declare the coronavirus disease of 2019(COVID-19)a public health emergency of international concern.Cancer patients are regarded as a highly vulnerable population to SARS-CoV-2 infection and development of more severe COVID-19 symptoms,which is possibly due to the systemic immunosuppressive state caused directly by tumor growth and indirectly by effects of anticancer treatment.Currently,much effort has been directed toward studying the pathogenesis and treatment of COVID-19,but the risk profiles,prognoses,and treatment outcomes in cancer patients remain unclear.Based on the current literature,we summarize the risk profiles,clinical and biochemical characteristics,and therapy outcomes of COVID-19 infections in cancer patients.The challenges in the clinical care of cancer patients with COVID-19 are discussed.The goal of this review is to stimulate research to better understand the biological impact and prognoses of COVID-19 infections in cancer patients,thus facilitating improvement of the clinical management of these patients.展开更多
Using the high-quality observed meteorological data, changes of the thermal conditions and precipitation over the North China Plain from 1961 to 2009 were examined. Trends of accumulated temperature and negative tempe...Using the high-quality observed meteorological data, changes of the thermal conditions and precipitation over the North China Plain from 1961 to 2009 were examined. Trends of accumulated temperature and negative temperature, growing season duration, as well as seasonal and annual rainfalls at 48 stations were analyzed. The results show that the accumulated temperature increased significantly by 348.5℃ day due to global warming during 1961-2009 while the absolute accumulated negative temperature decreased apparently by 175.3℃ day. The start of growing season displayed a significant negative trend of -14.3 days during 1961- 2009, but the end of growing season delayed insignificantly by 6.7 days. As a result, the length of growing season increased by 21.0 days. The annual and autumn rainfalls decreased slightly while summer rainfall and summer rainy days decreased significantly. In contrast, spring rainfall increased slightly without significant trends. All the results indicate that the thermal conditions were improved to benefit the crop growth over the North China Plain during 1961-2009, and the decreasing annual and summer rainfalls had no direct negative impact on the crop growth. But the decreasing summer rainfall was likely to influence the water resources in North China, especially the underground water, reservoir water, as well as river runoff, which would have influenced the irrigation of agriculture.展开更多
Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible pro...Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed.展开更多
基金We thank Dr Zicai Liang and Huang Huang (Institute of Molecular Medicine, Peking University) for their kind help with BioTek Multi-Detection Microplate Reader and Yizhe Zhang for technical support on real-time PCR. We also thank Chengyan Wang, Pengbo Zhang, Pingping Hou, Haisong Liu, Chun Liu and other colleagues in our laboratory for technical assistance and advice in carrying out these experiments. This study was supported by a Bill & Melinda Gates Foundation Grant (37871), a Ministry of Education grant (705001), the National Basic Research Program of China (973 program, 2009CB522502, 2009CB941200 and 2007CB947901), National Natural Science Foundation of China for Creative Research Groups (30421004), the Chinese Science and Technology Key Project (2008zx10002-014, 2008zx10002- 011 and 2009ZX 10004-403) and a 111 Project to Deng H.
文摘Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iPS cells has not yet been reported. In this report, human iPS cells were induced to differentiate into hepatic cells by a stepwise protocol. The expression of liver cell markers and liver-related functions of the human iPS cell-derived cells were monitored and compared with that of differentiated human ES cells and primary human hepatocytes. Approximately 60% of the differentiated human iPS cells at day 7 expressed hepatic markers alpha fetoprotein and Alb. The differentiated cells at day 21 exhibited liver cell functions including albumin Asecretion, glycogen synthesis, urea production and inducible cytochrome P450 activity. The expression of hepatic markers and fiver-related functions of the iPS cellderived hepatic ceils were comparable to that of the human ES cell-derived hepatic cells. These results show that human iPS cells, which are similar to human ES cells, can be efficiently induced to differentiate into hepatocyte-like cells.
文摘A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.
基金supported by the National Natural Science Foundation of China(90717003 and 30625002 to L.-J. Q.)partially by the 111 Project
文摘In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study, WUS and WUS.like WOX genes had been reported as essential for the development of the SAM. In this study, the consequences of gain of WOX1 function are described. Here we report the identification of an Arabidopsis gain-of-function mutant woxl-D, in which the expression level of the WOX1 (WUSCHEL HOMEOBOX 1) was elevated and subtle defects in meristem development were observed. The woxl-D mutant phenotype is dwarfed and slightly bushy, with a smaller shoot apex. The woxl-D mutant also produced small and dark green leaves, and exhibited a failure in anther dehiscence and male sterility. Molecular evidences showed that the transcription of the stem cell marker gene CLV3 was down-regulated in the meristem of woxl-D but accumulated in the other regions, i.e., in the root-hypocotyl junction and at the sites for lateral root initiation. The fact that the organ size and cell size in leaves of woxl-D are smaller than those in wild type suggests that cell expansion is possibly affected in order to have partially retarded the development of lateral organs, possibly through alteration of CLV3 expression pattern in the meristem. An S-adenosylmethionine decarboxylase (SAMDC) protein, SAMDC1, was found able to interact with WOX1 by yeast two-hybrid and pull-down assays in vitro. HPLC analysis revealed a significant reduction of polyamine content in woxl-D. Our results suggest that WOX1 plays an important role in meristem development in Arabidopsis, possibly via regulation of SAMDC activity and polyamine homeostasis, and/or by regulating CLV3 expression.
基金supported by the National Basic Research Program of China (Grant no. 2015CB251100)Beijing Natural Science Foundation (No. L182023)
文摘Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential. However, the perplexing issue of lithium dendrite growth impedes the commercial application. The initial nucleation and low Li ions diffusion rate in the electrolyte/electrode interface dominate the deposition behavior. Therefore, a uniform and flexible interface is urgently needed. Here, a facile method is proposed to prepare a thin and porous LiF-rich layer (TPL) by the in-situ reaction of small amount of ammonium hydrogen difluoride (NH4HF2) and Li metal. The deposition morphology on Li metal anode with LiF layer is significantly flat and homogeneous owning to low lateral diffusion barrier on LiF crystals and the porous structure of TPL film. Additionally, the symmetrical cells made with such TPL Li anodes show significantly stable cycling over 100 cycles at high current density of 6 mA/cm^2. The TPL Li|LiFePO4 full cells keep over 99% capacity retention after 100 cycles at 2.0 C. This approach serves as a facile and controllable way of adjusting the protective layer on Li metal.
基金supported by the State Key Program of National Natural Science Foundation of China (Grant No. 51239005)the National Science & Technology Pillar Program (Grant No. 2011BAF14B04)the Jiangsu Provincial Project for Innovative Postgraduates of China (Grant No. CXZZ11_0564)
文摘In this paper, the periodically unsteady pressure field and head-drop phenomenon caused by leading edge cavitation have been investigated numerically by computational fluid dynamics (CFD) in a single stage centrifugal pump. A CFD model for cavita- tion steady and unsteady simulation has been calculated using the κ-ω SST turbulence model combining with a multiphase ap- proach, based on a homogeneous model assumption. A truncated form of Rayleigh-Plesset equation is used as a source term for the inter-phase mass transfer. The CFD computational region includes the suction cone, impeller, side chambers and volute, as well as suction and pressure pipes. The results were compared with experimental data under non-cavitation and cavitation conditions and a good agreement was obtained for the global performance, the experimental data of the head and the efficiency are 34.04 m and 74.42% at BEP, respectively, the predicted head is 34.31 m and the predicted efficiency is 73.75%. The analy- sis of inner flow pattern shows that the vortex flow generation in the rear of cavity region is the main reason of the head-drop. Obvious increasing can be observed for the amplitude of the pressure fluctuation at the blade passing frequency with different cavitation situations, and subpeak can be found. Besides, the effects of unsteady flow in the side chambers cannot be neglected for accurately predicting the inner flow of the pump. These results imply that this numerical method is suitable for the cavitat- ing flow in the pump.
基金the National Basic Research Program of China (973 Program) (Nos. 2015CB964800 and 2014CB910503), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA01020312), the National High Technology Research and Development Program of China (2015AA020307), the National Nat- ural Science Foundation of China (Grant Nos. 81330008, 31222039, 31201111, 81371342, 81300261, 81300677, 81271266, 81471414, 81422017, and 81401159), the Program of Beijing Municipal Science and Technology Commission (Z151100003915072), the Beijing Nat- ural Science Foundation (7141005 and 5142016), the Key Research Program of the Chinese Academy of Sciences (KJZDEW-TZ-L05), the Thousand Young Talents program of China, Youth Innovation Pro- motion Association of CAS. WZ was supported by NIH grants CA158055, CA200673, and CA203834, the V Scholar award, Breast Cancer Research Award and Oberley Award (National Cancer Insti- tute Award P30CA086862) from Holden Comprehensive Cancer Center at the University of Iowa, and startup fund from the Department of Pathology, University of lowa.
文摘Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, teiomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRN- deficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0105804)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16010000)+8 种基金the National Key Research and Development Program of China(2018YFC2000100,2017YFA0103304,2017YFA0102802,2018YFA0107203)the National Natural Science Foundation of China(81670897,81625009,91749202.81861168034,81921006,31671429,91949209,91749123,81671377,81822018,81870228,81922027,81701388,81601233)the Program of the Beijing Municipal Science and Technology Commission(Z191100001519005)Bejing Natural Science Foun-dation(Z190019)Bejing Municipal Commission of Health and Family Planning(PXM2018026283_000002)Advanced Innovation Center for Human Brain Protection(3500-1192012)the Key Research Program of the Chinese Academy of Sciences(KFZD-SW-221)K.C.Wong Education Foundation(GJTD-2019-06,GJTD-2019-08),Youth Innovation Promotion Association of CAS(2016093)the State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology.
文摘Age-associated changes in immune cells have been linked to an increased risk for infection.However,a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking.Here,we combined scRNA-seq,mass cytometry and sCATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19.We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector,cytotoxic,exhausted and reg-ulatory cells,along with increased late natural killer cells,age-associated B cells,inflammatory monocytes and age-associated dendritic cells.In addition,the expression of genes,which were implicated in coron-avirus susceptibility,was upregulated in a cell subtype-specific manner with age.Notably,COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senes-cence.Therefore,these findings suggest that a dysreg-ulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
基金supported by the National Natural Science Foundation of China(Grant Nos.41505084,41275053and 41461164006)the China Meteorological Administration Special Public Welfare Research Fund(Grant Nos.GYHY201406003 and GYHY201406009)+1 种基金the Guangdong Meteorological Service Project(Grant No.2015B01)the Guangdong Province Public Welfare Research and Capacity Construction Project(Grant No.2017B020218003)
文摘Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization(SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer(PBL)parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.
文摘OBJECTIVE: To evaluate the therapeutic effectiveness and safety of Jinying capsule on pelvic inflammatory disease(PID) in patients with symptoms identified as the pattern of damp and heat accumulation in terms of Traditional Chinese Medicine(TCM).METHODS: We conducted a double-blinded, multicenter, randomized, placebo-controlled clinical trial which included 155 patients diagnosed with PID and identified as symptom pattern of damp and heat accumulation. They were randomly divided into experimental group(n = 78) and control group(n = 77) according to a random number table. The treatment lasted for a period of 28 d. The experimental group was given Jinying capsules and oral levofloxacin plus oral metronidazole for first 7 d.They continued with Jinying capsules and levofloxacin placebo and metronidazole placebo for another 7 d. For the remaining 14 d, they continued with Jinying capsules only. Whereas, the control group was treated with oral levofloxacin and metronidazole and Jinying capsule placebo for the first 14 d in the same way as the experimental group and then continued with Jinying capsule placebo only for the remaining 14 d. The clinical efficacy was assessed using McCormack scale, TCM symptom pattern scores, physicochemical indexes including white blood cell and erythrocyte sedimentation rate, C-reaction protein, smear of vaginal discharge,and pelvic ultrasound.RESULTS: Comparing McCormack scale between both groups after treatment, the difference in curative effect between both groups was significant (P = 0.0269). The cure rate of the experimental group and control group is 76.32% and 59.46% respectively at week 4. Comparing TCM symptom pattern scores between both groups before and after treatment, the differences in total effective rate were both significant(P < 0.05). The curative effect rate of experimental group is 2.63% and 13.70% of the control group at week 1(P = 0.0131), and73.33% of the experimental group and 56.94% of the control group at week 4(P = 0.0369). No significant differences were found
基金NIH/NCI grants(R01CA168912 and R01CA235159)Augusta University intramural grant。
文摘Liver cancers, majority of which are primary hepatocellular carcinoma(HCC), continue to be on the rise in the world. Furthermore, due to the lack of effective treatments, liver cancer ranks the 4th most common cause of male cancer deaths. Novel therapies are urgently needed. Over the last few years,immunotherapies, especially the checkpoint blockades and adoptive cell therapies of engineered T cells,have demonstrated a great potential for treating malignant tumors including HCC. In this review, we summarize the current ongoing research of antigen-specific immunotherapies including cancer vaccines and adoptive cell therapies for HCC. We briefly discuss the HCC cancer vaccine and then focus on the antigen-specific T cells genetically engineered with the T cell receptor genes(TCRTs) and the chimeric antigen receptor genes(CARTs). We first review the current options of TCRTs and CARTs immunotherapies for HCC, and then analyze the factors and parameters that may help to improve the design of TCRTs and CARTs to enhance their antitumor efficacy and safety. Our goals are to render readers a panoramic view of the current stand of HCC immunotherapies and provide some strategies to design better TCRTs and CARTs to achieve more effective and durable antitumor effects.
基金the Department of Sciences and Technology of Yunnan Province (2016BB001)the National Basic Research Program of China (2013CB835200)a Key Grant of Yunnan Provincial Science and Technology Department (2013GA004)
文摘Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss or degeneration of function.However,mutations occurring randomly under natural conditions have provided very limited genetic resources for yield increases.In this study,potentially yield-increasing alleles of two genes closely associated with yield were edited artificially.The recently developed CRISPR/Cas9system was used to edit two yield genes:Grain number 1a(Gn1a)and DENSE AND ERECT PANICLE1(DEP1).Several mutants were identified by a target sequence analysis.Phenotypic analysis confirmed one mutant allele of Gn1a and three of DEP1 conferring yield superior to that conferred by other natural high-yield alleles.Our results demonstrate that favorable alleles of the Gnla and DEP1 genes,which are considered key factors in rice yield increases,could be developed by artificial mutagenesis using genome editing technology.
基金This work was supported by the National Natural Science Foundation of China(91839101,21774086,81770258,81900317)the Suzhou Municipal Science and Technology Foundation(SYS2018026)the Introduction Project of Clinical Medicine Expert Team for Suzhou(SZYJTD201704).
文摘Myocardial infarction(MI)is one of cardiovascular diseases that pose a serious threat to human health.The pathophysiology of MI is complex and contains several sequential phases including blockage of a coronary artery,necrosis of myocardial cells,inflammation,and myocardial fibrosis.Aiming at the treatment of different stages of MI,in this work,an injectable alginate based composite hydrogel is developed to load vascular endothelial active factor(VEGF)and silk fibroin(SF)microspheres containing bone morphogenetic protein 9(BMP9)for releasing VEGF and BMP9 to realize their respective functions.The results of in vitro experiments indicate a rapid initial release of VEGF during the first few days and a relatively slow and sustained release of BMP9 for days,facilitating the formation of blood vessels in the early stage and inhibiting myocardial fibrosis in the long-term stage,respectively.Intramyocardial injection of such composite hydrogel into the infarct border zone of mice MI model via multiple points promotes angiogenesis and reduces the infarction size.Taken together,these results indicate that the dual-release of VEGF and BMP9 from the composite hydrogel results in a collaborative effect on the treatment of MI and improvement of heart function,showing a promising potential for cardiac clinical application.
基金Supported by the National Basic Research Program of China(973 Program)-the Effect of De Qi on Acupoint Specific Effect Based on Meridians and its Characteristics and Molecular Response Mechanisms(No.2012CB518506)Research on Acupoint Specificity in Regulating Uterus(No.2006CB504503)National Natural Science Foundation of China-Research on Variations of Biophysical Properties of Acupoints on Different Meridians with the Same Spinal Segments Based on Primary Dysmenorrhea(No.81573884)
文摘OBJECTIVE:To assess skin temperature response to menstruation at acupuncture points in primary dysmenorrhea(PD) patients and healthy volunteers so as to explore acupuncture point specificity in reflecting diseases in the light of skin temperature.METHODS:Fifty-two PD patients and 49 healthy volunteers were recruited.Skin temperature measurements were performed with a skin temperature assessment device at 10 points.Absolute difference between skin temperature of the same point on the left and right side is used as main outcome measure.RESULTS:On the first day of menstruation, when menstrual pain attacking in PD patients, a significant increase in skin temperature difference was detected at Taixi(KI 3) compared with the healthy group(P < 0.01).A significant reduction in skin temperature difference was detected at Taixi(KI 3) in the first day of menstruation compared with those values in the third day after menstruation(P < 0.01)in the healthy group.On the third day after menstruation, a significant reduction in skin temperature difference was found at Zhongdu(LR 6) in PD group compared with the healthy group(P < 0.05).No significant differences of skin temperature were detected at other points(P > 0.05).CONCLUSION:The skin temperature difference at menstruation-relevant points in PD patients did not all change significantly more than those in women without PD.Significant difference was only found in Taixi(KI 3), the Yuan-source point of Kidney meridian.
基金supported by the National Institutes of Health(Grant No.2R01CA151610)Department of Defense(Grant No.W81XWH-18-1-0067)a Samuel Oschin Cancer Institute Discovery Fund Award and Community Outreach and Engagement Developmental Fund Award.
文摘A novel coronavirus known as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has spread across the world,prompting the World Health Organization to declare the coronavirus disease of 2019(COVID-19)a public health emergency of international concern.Cancer patients are regarded as a highly vulnerable population to SARS-CoV-2 infection and development of more severe COVID-19 symptoms,which is possibly due to the systemic immunosuppressive state caused directly by tumor growth and indirectly by effects of anticancer treatment.Currently,much effort has been directed toward studying the pathogenesis and treatment of COVID-19,but the risk profiles,prognoses,and treatment outcomes in cancer patients remain unclear.Based on the current literature,we summarize the risk profiles,clinical and biochemical characteristics,and therapy outcomes of COVID-19 infections in cancer patients.The challenges in the clinical care of cancer patients with COVID-19 are discussed.The goal of this review is to stimulate research to better understand the biological impact and prognoses of COVID-19 infections in cancer patients,thus facilitating improvement of the clinical management of these patients.
基金Supported by the National Science and Technology Support Program of China (2007BAC29B05)China Meteorological Administration Special Public Welfare Research Fund for Meteorological Profession (GYHY200806008 and GYHY201106021)
文摘Using the high-quality observed meteorological data, changes of the thermal conditions and precipitation over the North China Plain from 1961 to 2009 were examined. Trends of accumulated temperature and negative temperature, growing season duration, as well as seasonal and annual rainfalls at 48 stations were analyzed. The results show that the accumulated temperature increased significantly by 348.5℃ day due to global warming during 1961-2009 while the absolute accumulated negative temperature decreased apparently by 175.3℃ day. The start of growing season displayed a significant negative trend of -14.3 days during 1961- 2009, but the end of growing season delayed insignificantly by 6.7 days. As a result, the length of growing season increased by 21.0 days. The annual and autumn rainfalls decreased slightly while summer rainfall and summer rainy days decreased significantly. In contrast, spring rainfall increased slightly without significant trends. All the results indicate that the thermal conditions were improved to benefit the crop growth over the North China Plain during 1961-2009, and the decreasing annual and summer rainfalls had no direct negative impact on the crop growth. But the decreasing summer rainfall was likely to influence the water resources in North China, especially the underground water, reservoir water, as well as river runoff, which would have influenced the irrigation of agriculture.
基金financially supported by National Key R&D Program for International Cooperation(No.2021YFE0115100)the project of the National Natural Science Foundation of China(Nos.51872240,51972270 and 52172101)+4 种基金Key Research and Development Program of Shaanxi Province(No.2021ZDLGY14-08 and 2022KWZ-04)Natural Science Foundation of Shaanxi Province(2020JZ-07)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-TS-03)the Fundamental Research Funds for the Central Universities(No.3102019JC005 and G2022KY0604)the Research Fund of the State Key Laboratory of Solid Lubrication(CAS),China(LSL-2007)。
文摘Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed.